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Chapter 1  
 

Welcome to  
BenMAP-CE 

 
 
 
 
 
 
 
 
 

In this chapter, find… 
 An overview of the tool. 
 Instructions for installing the tool. 
 Contacts, sources for more information, and  

answers to frequently asked general questions. 
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The environmental Benefits Mapping and Analysis Program—Community Edition 
(BenMAP-CE) is a powerful, yet easy-to-use program that estimates the number and 
economic value of health impacts resulting from changes in air pollution 
concentrations. The open-source BenMAP-CE tool replaces the proprietary version of 
the program (BenMAP) that the U.S. Environmental Protection Agency (U.S. EPA) first 
developed in 2003 to analyze national-scale air quality policies. These analyses include 
health benefits assessments for the National Ambient Air Quality Standards (NAAQs) 
for Particulate Matter (2006, 2012) and Ozone (2008, 2010) as well as the Locomotive 
Marine Engine Rule (2008).   

U.S. EPA and its partners designed BenMAP-CE to serve the analytical needs of a range 
of users, including scientists, policy analysts, and decision makers. Most users apply the 
BenMAP-CE tool to answer one of two types of questions: 

1. What are the human health and economic benefits associated with a policy 
improving air quality? 

2. What is the human health burden attributable to total air pollution levels? 

While the BenMAP-CE development team designed the program to be accessible to 
novice users, the tool includes a number of features that will appeal to advanced 
analysts as well. For example, analysts can add their own health impact and valuation 
functions, map results, and perform a suite of sensitivity analyses. Beginning users can 
take advantage of U.S. EPA's pre-programmed settings and reports in the core program. 

1.1 Overview of BenMAP-CE & Benefits Assessment 

The BenMAP-CE program estimates the human health impacts and economic value of 
air quality changes. That is — BenMAP-CE relates air quality changes to human health 
benefits. Such analyses are a critical component of air quality policy assessments. As 
such, a variety of Federal, State and Local air pollution officials have used BenMAP-CE 
to inform air quality management decisions.1   

BenMAP-CE estimates benefits from improvements in human health, such as reductions 
in the risk of premature death, heart attacks, and other adverse health effects. Other 
benefits of reducing air pollution (i.e., visibility and ecosystem effects) are not 
quantified in the current version of BenMAP-CE. After estimating the reductions in the 
incidence of adverse health effects, BenMAP-CE calculates the monetary benefits 
associated with those reductions.  

How does BenMAP-CE estimate human health effects?   

First, BenMAP-CE determines the change in ambient air pollution using user-specified 
air quality data. Because BenMAP-CE does not model air quality changes, these data 

 
1 For a list of peer-reviewed articles that used the BenMAP and BenMAP-CE tools, see: www.epa.gov/benmap 



Chapter 1 – Welcome to BenMAP-CE 

BenMAP-CE User’s Manual March 2023 
1-2 

must be input into BenMAP-CE as modeling data or generated from air pollution 
monitoring data (although some monitoring data is pre-loaded in BenMAP-CE, see 
Chapter 5 for details). Next, BenMAP-CE relates the change in pollution concentration 
with certain health effects (also known as health endpoints, see Chapter 6 for details). 
This relationship is often referred to as the health impact function (HIF) or the 
concentration-response (C-R) function. As shown in Figure 1-1, these HIFs are derived 
from epidemiology studies that relate pollutant concentrations with health outcomes. 
BenMAP-CE applies that relationship to the population experiencing the change in 
pollution exposure to calculate health impacts.  

 

Figure 1-1.  Deriving a Health Impact Function from the Epidemiology Literature 
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A simplified example is shown below.   

Health Effect = Air Quality Change * Health Effect Estimate * Exposed Population * 
Health Baseline Incidence   

 Air Quality Change. The air quality change is the difference between the 
starting air pollution level (i.e., the baseline) and the air pollution level after 
some change, such as a new regulation (i.e., the control).   

 Health Effect Estimate. The health effect estimate is an estimate of the 
percentage change in the risk of an adverse health effect due to a one unit 
change in ambient air pollution. Epidemiological studies are a good source for 
effect estimates.   

 Exposed Population. The exposed population is the number of people affected 
by the air pollution reduction. The government Census office is a good source for 
this information. In addition, private companies may collect this information and 
offer it for sale.  

 Health Baseline Incidence. The health incidence rate is an estimate of the 
average number of people who die (or suffer from some adverse health effect) in a 
given population over a given period of time. For example, the health incidence rate 
might be the probability that a person will die in a given year. Health incidence 
rates and other health data are typically collected by the government. In addition 
the World Health Organization is a good source for this.2 

How does BenMAP-CE estimate the economic value of human health effects?   

BenMAP-CE also calculates the economic value of avoided health effects (see Chapter 7 
for details).  After calculating the health changes, you can estimate the economic value 
by multiplying the reduction of the health effect by an estimate of the economic value 
per case (see Figure 1-2):   

Economic Value = Health Effect * Value of Health Effect 

 
2 The World Health Organization is a good source for international health data, see: http://www.who.int. 

http://www.who.int/
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Figure 1-2.  Estimating the Economic Value of Human Health Effects 

There are several different ways of calculating the value of the health effect. For 
example, the value of an avoided premature mortality is generally calculated using the 
Value of Statistical Life (VSL). The value of a statistical life is the monetary value that a 
group of people are willing to pay to slightly reduce the risk of premature death in the 
population. For other health effects, the medical costs of the illness may be the only 
valuation data available. The BenMAP-CE database includes several different functions 
for VSL and valuation functions for other health effects for you to choose, or you can use 
the U.S. EPA's approach for quantifying and valuing air pollution effects3.   

Figure 1-3 summarizes the BenMAP-CE inputs and outputs. This figure shows the types 
of choices that you make regarding the modeling of population exposure, the types of 
health effects to model, and how to place an economic value on these health effects. 
Please note that BenMAP-CE does not have air quality modeling capabilities, and 
therefore the user must provide externally created data in order to work with modeled 
data. BenMAP-CE is preloaded with limited air quality monitoring data, but externally 
created monitoring data may also be needed. 

What else can BenMAP-CE do?  

BenMAP-CE incorporates a geographic information system (GIS), allowing users to 
create, utilize, visualize, and export maps of air pollution, population, incidence rates, 
incidence rate changes, economic valuations, and other types of data (Figure 1-4).  

  

 
3 See https://www.epa.gov/benmap/benmap-community-edition. 
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Figure 1-3. BenMAP-CE Flow Diagram 

 

Figure 1-4. BenMAP-CE GIS Example 
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Analysts can use BenMAP-CE to:  

 Create maps illustrating the 
population/community level 
ambient pollution levels; 

 Compare benefits associated 
with various regulatory 
programs;  

 Characterize the distribution of 
health impacts among 
population sub-groups;  

 Estimate health impacts and 
economic values of existing air 
pollution concentrations;  

 Estimate the health benefits of alternative ambient air quality standards; and  

 Perform sensitivity analyses of health or valuation functions, or of other inputs.  

1.2  How to Use this Manual  

Chapters 2 through 9 of this manual provide step-by-step instructions on how to use 
BenMAP-CE.  New users should start with Chapters 2 and 3, which are both relatively 
short. These chapters provide a basic overview of the tool and how it works, and 
explain some potentially confusing terminology.4 Use the rest of the manual to answer 
any specific questions you may have, or to walk you step-by-step through the various 
components. Chapter 4 discusses how to enter data into BenMAP-CE, Chapters 5 
through 7 cover each of the main steps in the Core Program, and Chapters 8 and 9 cover 
mapping, report options, and additional tools.  

Each chapter is introduced by a short section that describes what you can find within 
the chapter and provides an outline of the chapter's contents. This is a good place to go 
if the Table of Contents does not provide enough detail for you to find the section you 
need. The end of most chapters has a series of "Frequently Asked Questions," which 
may also be helpful for answering specific questions. In chapters that provide 
instructions on navigating the tool, the following conventions are observed: tree menu 
items, buttons, tabs and selection box labels are in bold type; prompts and messages are 
enclosed in quotation marks; and drop-down menu items, options to click or check, and 
items that need to be filled in or selected by the user are italicized. Throughout the 
chapters you will also see boxes presenting common mistakes and important things to 
remember when working with BenMAP-CE.   

 
4 Another good reference is the BenMAP-CE Quick Start Guide, see: http://www.epa.gov/benmap. 

Example Applications  
 
Analysts have used BenMAP-CE to investigate a 
variety of policy questions such as: 

• What is the current health burden from 
PM2.5 levels in Addis Ababa? 

• How large are the economic benefits of 
reduced maternal exposure to fine 
particulate matter? 

• What are the future health impacts of 
wildfire smoke health impacts under 
alternative climate scenarios? 

• What are the Environmental Justice 
implications of alternative air quality 
strategies in Detroit, MI? 

• How large are tree and forest effects on air 
quality and human health? 

• What are the health benefits from vehicular 
pollution control strategies? 

 
         

     

 

http://www.epa.gov/benmap
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There is also a set of Technical Appendices to provide more detailed information on 
model functions, data, and underlying assumptions.   

Appendix A: Monitor Rollback Algorithms   
Appendix B: Air Pollution Exposure Estimation Algorithms   
Appendix C: Deriving Health Impact Functions   
Appendix D: Health Incidence & Prevalence Data in U.S. Setup   
Appendix E: Core Particulate Matter Health Impact Functions in U.S. Setup   
Appendix F: Core Ozone Health Impact Functions in U.S. Setup  
Appendix G: Additional Health Impact Functions in U.S. Setup 
Appendix H: Core Health Valuation Functions in U.S. Setup   
Appendix I: Additional Health Valuation Functions in U.S. Setup 
Appendix J: Population & Other Data in U.S. Setup   
Appendix K: Uncertainty & Pooling   
Appendix L: Command Line BenMAP-CE   
Appendix M: Function Editor   
References  

1.3  Computer Requirements  

The computer hardware requirements for BenMAP-CE are typically modest, though this 
will vary depending on the complexity of the analysis. BenMAP-CE requires a Windows 
platform and can be used on machines running Windows 7, Windows 8 or Windows 10. 
In particular, BenMAP-CE requires a computer with:  

 Either a 64- or 32-bit operating system, although a 64-bit operating system is 
recommended 

 Adobe Acrobat Reader 

 Microsoft Excel or other spreadsheet program (in order to read exported .xlsx 
files)5 

 Microsoft .NET Framework 4 (or 4.5)6 

 
5 OpenOffice and LibreOffice are two open-source options for spreadsheet tools. 
6 If .NET is not pre-installed, BenMAP-CE will provide a message advising you to install .NET.  A standalone 
installer is available on the Microsoft website (URL:  http://www.microsoft.com/en-
us/download/details.aspx?id=17718). Install the runtime version and associated files (e.g., 
dotnetfx40_full_x86_x64.exe). 

http://www.microsoft.com/en-us/download/details.aspx?id=17718
http://www.microsoft.com/en-us/download/details.aspx?id=17718
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 At least 4 gigabytes of RAM7 

 Intel or compatible processor, Core i5 (or better)  

 At least 10 GB free disk space is necessary for installation of the BenMAP-CE 
database and ancillary files8.  

1.4  Installing BenMAP-CE  

The installation of BenMAP-CE is very simple. Double click Setup.exe in your 
installation directory to bring up the setup wizard. Then follow the setup wizard by 
clicking 'Next' or 'OK' to complete the installation. 

 

 
7 BenMAP-CE works best in a 64-bit Windows environment. With a 32-bit installation there are limits on the 
memory available to the software application; it can utilize no more than 2 GB of RAM.  This will impact 
performance when processing large spatial datasets or numerous health impact/valuation functions. To 
determine whether your computer is running a 32-bit or 64-bit version of Windows, refer to this article from 
Microsoft:  https://support.microsoft.com/en-us/help/15056/windows-7-32-64-bit-faq 
8 A solid state drive (SSD) has also shown improved performance over hard disk drives (HDD). 
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Upgrading to a new version of BenMAP-CE  

Periodically, new versions of BenMAP-CE will be made available and posted to the 
BenMAP-CE website: http://www.epa.gov/benmap/. If you are upgrading, first 
uninstall the previous version of the software on your computer (details provided in 
Section 1.5).  Then extract the files from the installer package (.zip file) and run the 
executable ("setup.exe").  A new installer package can be relatively large (~1.2 
gigabytes) because the database is embedded in the installer.  However, once 
downloaded, the installation process is generally very fast.  

Installation instructions are typically provided with each software release. Refer to 
these supplemental instructions for important additional information. Please note that 
your existing Setups will not be automatically transferred to newly installed versions of 
BenMAP. See instructions for exporting and importing databases in Chapter 9. 

1.5 Uninstalling BenMAP-CE  

To uninstall BenMAP-CE, go to Control Panel, Programs and Features and remove 
BenMAP-CE. Note that uninstalling BenMAP-CE does not also remove any results files 
that you have created with BenMAP-CE.  

 

 

 

http://www.epa.gov/benmap/
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1.6 Contacts for Comments, Questions & Bug Reporting 

For comments and questions, please contact Ali Kamal at the U.S. EPA.   

Address: C539-07, U.S. EPA Mailroom, Research Triangle Park, NC 27711   

Email: kamal.ali@epa.gov  

Telephone: 919-541-4959  

Alternatively, you can send a message at the BenMAP-CE website: 
https://www.epa.gov/benmap/forms/contact-us-about-benmap, or by simply emailing 
benmap@epa.gov.  

To report programming bugs or suggest additions to the software in BenMAP-CE:  

 Select the Help menu in the main window; 

 Open the Provide Feedback form; 

 Complete the form and submit the report.  

 

mailto:fann.neal@epa.gov
https://www.epa.gov/benmap/forms/contact-us-about-benmap
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1.7  Sources for More Information    

For supplemental information on BenMAP-CE, such as articles and presentations, 
manuals, and training materials go to:    

 U.S. Environmental Protection Agency, Office of Air Quality Planning and 
Standards (OAQPS), BenMAP-CE website: https://www.epa.gov/benmap/     

To interact with other BenMAP users, go to: 

 BenMAP-CE Discussion Forum: https://forum.benmap.org/ 

To access the BenMAP-CE source code, go to: 

 BenMAP-CE on Github: https://github.com/BenMAPCE/BenMAP-CE 

For more information on conducting benefit analysis, see the following documents:     

 U.S. EPA (various years). Costs and Benefits of the Clean Air Act. Available at: 
https://www.epa.gov/clean-air-act-overview/benefits-and-costs-clean-air-act  

 U.S. EPA (2006). Final Regulatory Impact Analysis: 2006 National Ambient Air 
Quality Standards for Particulate Matter. Office of Air Quality Planning and 
Standards. See: Chapter 5. Available at: 
http://www.epa.gov/ttn/ecas/regdata/RIAs/Chapter%205--Benefits.pdf   

 U.S. EPA (2008). Final Ozone NAAQS Regulatory Impact Analysis. Office of Air 
Quality Planning and Standards. March. See: Chapter 6. Available at: 
https://www3.epa.gov/ttn/ecas/regdata/RIAs/6-ozoneriachapter6.pdf  

 U.S. EPA (2008). Regulatory Impact Analysis: Control of Emissions of Air 
Pollution from Locomotive Engines and Marine Compression Ignition Engines 
Less than 30 Liters Per Cylinder. Office of Transportation and Air Quality. 
EPA420-R-08-001a. May. See: Chapter 6. Available at: 
https://nepis.epa.gov/Exe/ZyPDF.cgi/P10024CN.PDF?Dockey=P10024CN.PDF 

 U.S. EPA (2010). Final Regulatory Impact Analysis (RIA) for the SO2 National 
Ambient Air Quality Standards (NAAQS). Office of Air Quality Planning and 
Standards. June. See:  Chapter 5. Available at: 
http://www.epa.gov/ttn/ecas/regdata/RIAs/fso2ria100602ch5.pdf   

 U.S. EPA (2010). Final Regulatory Impact Analysis (RIA) for the NO2 National 
Ambient Air Quality Standards (NAAQS). Office of Air Quality Planning and 
Standards. June. See:  Chapter 4. Available at: 
https://www3.epa.gov/ttn/ecas/docs/ria/naaqs-no2_ria_final_2010-01.pdf   

https://www.epa.gov/benmap
https://forum.benmap.org/
https://github.com/BenMAPCE/BenMAP-CE
https://www.epa.gov/clean-air-act-overview/benefits-and-costs-clean-air-act
http://www.epa.gov/ttn/ecas/regdata/RIAs/Chapter%205--Benefits.pdf
https://www3.epa.gov/ttn/ecas/regdata/RIAs/6-ozoneriachapter6.pdf
http://www.epa.gov/ttn/ecas/regdata/RIAs/fso2ria100602ch5.pdf
https://www3.epa.gov/ttn/ecas/docs/ria/naaqs-no2_ria_final_2010-01.pdf
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 U.S. EPA (2010). Guidelines for Preparing Economic Analyses. Office of the 
Administrator, National Center for Environmental Economics. EPA 240-R-10-
001. December. Available at:  
https://yosemite.epa.gov/ee/epa/eerm.nsf/vwAN/EE-0568-50.pdf/$file/EE-
0568-50.pdf     

 U.S. EPA (2011). Regulatory Impact Analysis (RIA) for the Final Transport Rule. 
Office of Air and Radiation. June. See: Chapter 5. Available at: 
http://www.epa.gov/airtransport/pdfs/FinalRIA.pdf  

 U.S. EPA (2011). Regulatory Impact Analysis for the Final Mercury and Air Toxics 
Standards. Office of Air Quality Planning and Standards. December. See: Chapter 
5.  Available at: http://www.epa.gov/ttnecas1/regdata/RIAs/matsriafinal.pdf    

 U.S. EPA (2012).  Regulatory Impact Analysis for the Final Revisions to the 
National Ambient Air Quality Standards for Particulate Matter. See: Chapter 5. 
Available at: http://www.epa.gov/ttnecas1/regdata/RIAs/finalria.pdf  

1.8  Frequently Asked Questions (General)  

Is BenMAP-CE free? Is there a Terms of Use agreement? Are there any restrictions on 
using BenMAP-CE?  

BenMAP-CE is free. There is no Terms of Use agreement and there are no restrictions on 
using BenMAP-CE. Feel free to share it with others.  

How do I know which version of BenMAP-CE I am using? How do I know if I have the 
most current version of BenMAP-CE? How do I get the most current version?  

You can identify the version of BenMAP-CE you are using by going to the Help menu and 
choosing About. Here you will see the version number and contact information. To 
determine whether you have the most recent version of BenMAP-CE, you can check the 
BenMAP-CE website (http://www.epa.gov/benmap/), which will have the latest 
version that is publicly available.  Alternatively, you can use the contact information to 
inquire about any upcoming versions of the model. 

https://yosemite.epa.gov/ee/epa/eerm.nsf/vwAN/EE-0568-50.pdf/$file/EE-0568-50.pdf
https://yosemite.epa.gov/ee/epa/eerm.nsf/vwAN/EE-0568-50.pdf/$file/EE-0568-50.pdf
http://www.epa.gov/airtransport/pdfs/FinalRIA.pdf
http://www.epa.gov/ttnecas1/regdata/RIAs/matsriafinal.pdf
http://www.epa.gov/ttnecas1/regdata/RIAs/finalria.pdf
http://www.epa.gov/benmap/
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Why don't my files created with an older version of BenMAP work with BenMAP-CE?  

Files created with an older version of BenMAP will not, in most cases, work with 
BenMAP-CE because of changes to the program. For example, later versions of 
BenMAP-CE have the capability to handle population data differentiated by ethnicity. 
For this reason, after completing an analysis with BenMAP-CE, it is always good to 
archive the BenMAP-CE installer along with the files used in your analysis, so that you 
will always be able to reproduce your work in the future. 

Why are my pop-up windows too small? Why are buttons missing?  

If the BenMAP-CE pop-up windows do not show the entire content (display seems cut 
off or buttons are missing), please check the display properties for your computer. 
Locate your Control Panel, then your Display settings, and choose the screen 
resolution associated with 96 DPI (display pixels per inch).  Here is what the screen 
looks like for Windows 7 Professional operating system. 
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Why do I get different results than someone else?  

There are many possible reasons why your results might differ from someone else's 
results. One good place to start is the Audit Trail Reporting option. With the Audit Trail 
you can examine the assumptions and selections that you have made to generate your 
results and compare your selections with those made in another analysis.  

What do I need to be aware of if I use BenMAP-CE for a local scale analysis?   

Perhaps the most important issue is to make sure that you have identified the 
resolution of your analysis and have the appropriate grid definitions loaded into 
BenMAP-CE. See Chapter 4 (Section 4.1.1) to read about grid definitions. The next key 
step, which is closely connected to the grid definitions, is to determine the data that you 
want to use. Data such as air quality modeling, incidence data, and population data need 
to match the grid definitions that you are using. You also need to be careful about the 
formatting of your data when loading it into BenMAP-CE.  Chapter 4 also provides 
information on loading data into BenMAP-CE.  

Does BenMAP-CE estimate effects of air pollution that are not related to human health 
(i.e., ecological effects)?  

No. BenMAP-CE does not currently have impact functions to estimate other than human 
health effects. In principle, it would be possible to estimate ecological effects, as 
BenMAP-CE is designed to combine different types of geographically variable data. To 
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do so, you would need to develop and load data and impact functions appropriate to 
estimating ecological effects of interest.  

How can I get training for BenMAP-CE?   

A variety of training resources are available, including self-paced exercises, online 
interactive modules and instructor-led training are available at:  
https://www.epa.gov/benmap/benmap-ce-training-materials 

Where can I find the source code for BenMAP-CE? 

BenMAP-CE is an open source program and the development team welcomes 
contributions and scrutiny from the user community. If you are interested in receiving a 
current copy of the source code, see https://github.com/BenMAPCE/BenMAP-CE.  

https://www.epa.gov/benmap/benmap-ce-training-materials
https://github.com/BenMAPCE/BenMAP-CE
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Chapter 2  
 

Terminology 
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Active Layer. In the GIS window, the active layer is the top-most data layer. All queries 
or statistical analysis of the map will act upon this top-most layer.  

Aggregation. The summing of grid cell level results to a larger spatial scale, such as 
county, state, or national levels.  

Aggregation, Pooling, and Valuation (APV) Configuration. APV configurations store 
your preferences regarding how to aggregate your results, whether and how to pool 
your results, and any economic valuation functions you have applied. For example, an 
APV file might aggregate your estimated change in incidence to the U.S. county level, it 
might pool across multiple hospital admission health impact functions and it could 
include an economic valuation function. APV configurations are stored in files with an 
.apvx file extension. The results derived from an APV configuration have an .apvrx file 
extension. APV files are by default stored in the APV folder, and APV results files are by 
default stored in the CFGR folder.  

Air Quality Surface. An air quality surface contains modeled or monitored air pollution 
data in a series of cells; these cells may be a regular shape (like a 12km by 12km grid) 
or an irregular shape (like a county or census tract). These surfaces are also referred to 
as air quality grids. BenMAP-CE uses one air quality grid to represent the baseline 
scenario and a second grid to represent the control scenario. These baseline and control 
grids must share the same geographic structure. The program calculates the difference 
between baseline and control grids as an input to the health impact function. Air Quality 
Grids are stored in files with an .aqgx file extension.  

Air Quality Metric. The metric expresses the time period over which air quality values 
are modeled or observed and whether that modeled or observed air quality value is an 
average, maximum or minimum. For example, the metric DailyMean represents the 
average concentration for the sampling day. This could be taken directly from a single 
24-hour observation or from an average of hourly (or more frequent) observations. In 
addition to the time period, some metrics also specify the method used for averaging or 
aggregation. For example, a typical ozone metric D8HourMax represents the highest of 
the 8-hour moving averages during the day. 

Air Quality Model. Air quality models are valuable air quality management tools. 
Models are mathematical descriptions of pollution transport, dispersion, and related 
physical and chemical processes in the atmosphere. Air quality models (like CMAQ9 and 
CAMx10) are used to estimate the air pollutant concentration at specific locations, which 
are referred to as receptors, or over a spatial area that has been divided into uniform 
grid squares. The number of receptors or grid-cells in a model far exceeds the number 
of monitors one could typically afford to deploy in a monitoring study. Therefore, 
models provide a cost-effective way to analyze pollutant impacts over a wide spatial 

 
9 Community Multi-scale Air Quality (CMAQ) Model is available at: 
http://www.epa.gov/amad/Research/RIA/cmaq.html or https://www.cmascenter.org/cmaq/. 
10 Comprehensive Air Quality Model with Extensions (CAMx) is available at: http://www.camx.com/. 

http://www.epa.gov/amad/Research/RIA/cmaq.html
https://www.cmascenter.org/cmaq/
http://www.camx.com/
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area where factors such as meteorology, topography, and emissions from both local and 
remote sources could be important. BenMAP-CE does not contain an air quality model. 

Attainment. The state of meeting the National Ambient Air Quality Standard (NAAQS) 
for a pollutant. A geographical area that meets the NAAQS is called an "attainment 
area."  

Audit Trail. This is a report that contains a record of all the choices involved in creating 
a particular file.  Audit trails can be created for any file that BenMAP-CE creates.  

Background Concentration. The concentration of a pollutant, generally in the absence 
of human sources. 

Background Incidence. The incidence of a given adverse effect due to all causes 
including air pollution. Also called baseline incidence rates.   

Baseline Scenario. The air quality levels prior to whatever policy change you are 
evaluating. The baseline is sometimes referred to as “Business as Usual.” The baseline 
scenario is usually considered to be the reference scenario against which to compare a 
potential “control scenario”, in which air quality levels are changed from the baseline levels.  

Beta. The coefficient for the health impact function. The value of beta (ß) typically 
represents the percent change in a given adverse health impact per unit of pollution.  

Closest Monitor. The procedure by which data from the closest monitor is used to 
represent air pollutant levels in a population grid cell. BenMAP-CE can also scale the 
data from the closest monitor with air pollution modeling data. BenMAP-CE includes two 
types of scaling - “temporal” and “spatial”.  See “Scaling” for additional information.  

Community Multi-scale Air Quality (CMAQ) Model. An open-source photochemical 
grid air quality model that the U.S. EPA and others rely upon to predict levels and changes 
in pollutant concentrations.  

Concentration-Response (C-R) Function. A C-R function estimates the relationship 
between adverse health effects and ambient air pollution, and is used to derive health 
impact functions (defined below). You will often see that the term C-R function and 
health impact function are used interchangeably.  

Configuration. A Configuration stores the health impact functions and model options used 
to estimate adverse health effects. Configurations are stored in files with a .cfgx file 
extension. CFGX files are by default stored in the CFG folder. The results derived from a 
Configuration have a .cfgrx file extension. CFGR files are by default stored in the CFGR 
folder. 

Contingent Valuation. A survey-based economic technique for the valuation of non-
market resources, such as environmental preservation or avoidance of air pollution 
health risk.  
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Control Scenario. In a modeling study, this is a sensitivity scenario in which emissions 
from one or more source sectors are changed (increased or decreased) from a given 
“baseline scenario”. The control scenario generally represents air quality levels after a 
new policy has been implemented.  

Core BenMAP-CE. The fully-featured benefits analysis program that accepts user-
defined air quality data, quantifies health impacts, aggregates, values and pools results 
(details available in Section 3.1). Non-Core BenMAP-CE features include Command Line 
and PopSim, described in the following Chapters and Appendices. 

Cost of Illness (COI). The cost of illness includes the direct medical costs and lost 
earnings associated with illness. These estimates generally understate the true 
economic value of reductions in risk of a health effect, as they include just the direct 
expenditures related to treatment and lost earnings but not the value of avoided pain and 
suffering.  

Currency Year. The value of the currency based on the year specified. Valuation 
estimates should use a consistent currency year to account for inflation. For example, 
you might want to report the valuation estimate in 2000 dollars to make it easier to 
compare with your cost analysis, which uses that same currency year.  

Deltas. The difference between two data points. As used in BenMAP-CE, mapping the air 
quality deltas shows the change in air pollution between the baseline air quality grid 
and the control air quality grid.  

Discount Rate. In a cost-benefit analysis, the discount rate is a quantitative method to 
account for the fact that people generally value future benefits and costs less than current 
costs and benefits. Typically, if a benefit occurs over multiple years, the economic benefit 
would be discounted.  

Endpoint. An endpoint is a subset of an endpoint group, and represents a more specific 
class of adverse health effects. For example, within the endpoint group Mortality, there 
might be the endpoints Mortality, Long Term, All Cause and Mortality, Long Term, 
Cardiopulmonary.  

Endpoint Group. An endpoint group represents a broad class of adverse health effects, 
such as premature mortality or hospital admissions. BenMAP-CE only allows pooling of 
adverse health effects to occur within a given endpoint group, as it generally does not make 
sense to sum the number of cases of disparate health effects, such as premature mortality 
and hospital admissions.  

Epidemiology. The study of factors affecting the health and illness of populations. 
Epidemiological studies cannot prove that a specific risk factor actually causes the 
disease being studied but can only show that a risk factor is associated (correlated) 
with a higher incidence of disease in the population exposed to that risk factor. 
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FIPS Code. Federal Information Processing Standard codes. Each state in the United 
States is assigned a 2-digit code. For example, “01” refers to Alaska, “37” refers to North 
Carolina, and “56” refers to Wyoming.    

Fixed Effect Pooling. Fixed effect pooling is one method to combine two or more 
distributions of health impact or economic value estimates into a single new 
distribution. Fixed effect pooling assumes that there is a single true underlying 
relationship between these component distributions, and that differences among 
estimated parameters are the result of sampling error. Weights for the pooling are 
generated via inverse variance weighting, thus giving more weight to the studies that 
exhibit lower variance and less weight to the input distributions with higher variance.  
See Random Effects Pooling below for additional information regarding pooling 
techniques.  

Fixed Radius. An option to interpolate air quality data points that uses all monitors 
within a fixed radius (or distance) of a given point of interest. All monitors are used and 
weighted by their relative distance.  

Geographic Area. Designation of a grid definition for linkage to a specific health impact 
function. 

GIS. Geographic Information System. A GIS is a system of hardware and software used 
for storage, retrieval, mapping, and analysis of geographic data.  

Global Burden of Disease. The World Health Organization global burden of disease 
(GBD) study measures burden of disease using the disability-adjusted-life-year (DALY). 
This time-based measure combines years of life lost due to premature mortality and 
years of life lost due to time lived in states of less than full health. The DALY metric was 
developed in the original GBD 1990 study to assess the burden of disease consistently 
across diseases, risk factors and regions.11 

Grid Cell. One of the many geographic, or spatial, components within a Grid Definition. 
These can be regularly or irregularly shaped. 

Grid Definition. A BenMAP-CE Grid Definition provides a method of breaking a 
geographic region into areas of interest (Grid Cells) in conducting an analysis. This can 
be done in two ways - by loading a Shapefile (a particular type of GIS file) or by 
specifying a regularly shaped grid pattern. These are referred to as Shapefile Grid 
Definitions and Regular Grid Definitions, respectively. Typically a Shapefile Grid 
Definition is used when the areas of interest are political boundaries with irregularly 
shaped borders, while a Regular Grid Definition is used when the areas of interest are 
uniformly shaped grids (e.g., rectangles). All grid definitions must have a unique (i.e., 
non-repeating) column and row index. 

 
11 For more information on the GBD, see: http://www.who.int/topics/global_burden_of_disease. 
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Health Impact Function. A health impact function calculates the change in adverse 
health effects associated with a change in exposure to air pollution. Based on a C-R 
function, a typical health impact function has inputs specifying the air quality metric 
and pollutant; the age, race and ethnicity of the population affected; and the incidence 
rate of the adverse health effect.  

Incidence. The total number of adverse health effects in a geographic region in a given 
unit time. In BenMAP-CE, this is the total number of adverse health effects avoided due 
to a change in air pollution levels.  

Incidence Rate. The background rate of a health effect per person in a given 
geographic region. The average number of adverse health effects per person per unit of 
time, typically a day or a year. The incidence rate must be expressed at the same time 
scale as the remainder of the health impact function. For example, a health impact 
function quantifying day-to-day changes in premature death must specify a daily death 
rate.  

Income Growth Adjustment. Adjusting certain valuation functions to reflect increases 
in real income over time. Generally, an increase in real income implies an increase in 
the willingness to pay (WTP). 

Interpolation. The process of estimating the air quality level in an unmonitored area 
by using one or more nearby air quality monitors. BenMAP-CE uses two types of 
interpolation procedures: one is to simply choose the closest monitor, the other is to 
use a technique called Voronoi Neighbor Averaging. These interpolation methods are 
discussed in more detail in Appendix B.  

Lat/Long. Latitude and longitude information to specify the geographic coordinates of 
a spatial location. The CMAQ model data are usually provided for each grid cell 
identified by the latitude and longitude of the grid cell's center point. Latitude identifies 
the north-to-south location of a point on the Earth. Longitude identifies the east to west 
location of a point on the Earth.  

Layer. In GIS, a layer represents a logical separation of mapped data usually 
representing a theme, such as political boundaries, roads, ozone data, number of 
mortalities avoided, etc.  

Layer Statistics. The summary statistics that correspond to the active layer in 
BenMAP-CE. For example, “mean”, “standard deviation” or “max” of PM2.5 air quality 
grid.  

Metadata.  Data that serves to provide context or additional information about other 
data.  BenMAP-CE stores a minimum set of standardized metadata fields for imported 
data files (e.g., file name, file date, reference, import date, and description).  For certain 
data types, additional metadata are recorded.  For example, GIS metadata will include 
information about datum, geographic coordinate system, resolution, and units. 
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Micrograms per Cubic Meter (µg/m3). The unit of measure for particulate matter in 
the NAAQS. This unit represents the mass of PM and other particle pollutants found in a 
cubic meter of air.  

Model Data. Pollutant concentration data that are generated by running an air quality 
model such as CMAQ. This is different from “monitor data,” which are based upon 
observed concentrations.  

Monetize. In the context of human health benefits assessment, this is the practice of 
expressing society's preferences for avoiding certain health effects as an economic 
value (e.g., in U.S. dollars). In BenMAP-CE we estimate monetized benefits by using either 
Willingness to Pay or Cost of Illness valuation functions (see above and below). 

Monitor Data. Pollutant concentration data that are based upon measurements from 
an air quality monitor. “Raw” monitor data usually refers to data that are taken directly 
from measurement networks, with no additional processing of the data. Monitor data 
are different from “model data,” which are based upon numerical predictions from an 
air quality model.  

Monitoring. Actual measurements of air pollution concentrations. The U.S. EPA has 
monitoring data, as well as other information related to monitoring, available through 
its Air Quality System (AQS): https://www.epa.gov/aqs. 

Monte Carlo Simulation.  A technique used in BenMAP-CE to quantify the confidence 
intervals around mean incidence and economic value estimate by randomly sampling 
an uncertainty distribution around the effect coefficients or willingness to pay 
estimates. 

Morbidity. A measure of being diseased or afflicted by an illness (generally non-fatal).  

Mortality. A measure of the number of deaths in a given population.  

National Ambient Air Quality Standards (NAAQS). The U.S. EPA establishes levels for 
pollutants that are considered harmful to public health and the environment. The Clean 
Air Act established two types of national air quality standards. Primary standards set 
limits to protect public health, including the health of “sensitive” populations such as 
asthmatics, children, and the elderly. Secondary standards set limits to protect public 
welfare, including protection against decreased visibility and against damage to 
animals, crops, vegetation, and buildings. The U.S. EPA has set NAAQS for six principal 
pollutants, which are called “criteria” pollutants: carbon monoxide, lead, nitrogen 
dioxide, ozone, particulate matter (PM2.5, PM10), and sulfur dioxide.  

Odds Ratio. A quantitative measure reported in epidemiology studies of the 
relationship between exposure to air pollution and a health outcome. Odds Ratios must 
be converted to beta coefficients to be used in BenMAP-CE 

https://www.epa.gov/aqs


Chapter 2 – Terminology 

BenMAP-CE User’s Manual March 2023 
2-8 

Ordinality. In relation to air quality monitors, ordinality refers to the number of 
monitor values in the season that can exceed your standard. For example, if we had set 
the ordinality to four, then a monitor can have as many as three daily averages 
(assuming that we are using the daily average metric to define our standard) greater 
than your standard without violating the standard. In terms of rollback, if it has more 
than three daily averages in exceedance of the standard, then the rollback technique 
will be applied to that monitor.  

Ozone (O3). BenMAP-CE focuses on ground level or “bad” ozone, which is not emitted 
directly into the air, but is created by chemical reactions between oxides of nitrogen 
(NOx) and volatile organic compounds (VOCs) in the presence of sunlight. Emissions 
from industrial facilities and electric utilities, motor vehicle exhaust, gasoline vapors, 
and chemical solvents are some of the major sources of NOx and VOC. Breathing ozone 
can trigger a variety of health problems, particularly for children, the elderly, and 
people of all ages who have lung diseases such as asthma. Ground level ozone can also 
have harmful effects on sensitive vegetation and ecosystems. 

Particulate Matter. Particulate matter, also known as particle pollution or PM, is a 
complex mixture of extremely small particles and liquid droplets. Particle pollution is 
made up of a number of components, including acids (such as nitrates and sulfates), 
organic chemicals, metals, and soil or dust particles. Once inhaled, these particles can 
affect the heart and lungs and cause serious health effects. Includes PM2.5 (particles less 
than 2.5 microns in aerodynamic diameter), PM10 (particles less than 10 microns in 
aerodynamic diameter), and PM10-2.5 (particles between 2.5 and 10 microns in 
aerodynamic diameter).  

Parts per Million (ppm). This unit represents the concentration of the pollutant in a 
million parts of air. Carbon monoxide is often measured in units of ppm.  

Parts per Billion (ppb). This unit represents the concentration of the pollutant in a 
billion parts of air. Ozone concentrations in BenMAP-CE are reported in units of ppb.  

POC (Parameter Occurrence Code).  An identifier used by U.S. EPA to distinguish 
between multiple monitors at the same site that are measuring the same parameter. For 
criteria pollutants, multiple monitors may be collocated to check precision. For 
combining data at the site level, the POC identifies the primary monitor (most frequent 
sampling). (POC appears in BenMAP-CE’s advanced filtering options for monitor data.) 

Pooling. The combining of different sets of data. BenMAP-CE has several pooling 
methods, including fixed effects, fixed/random effects, and subjective weighting. 
Appendix K discusses the pooling approaches available in BenMAP-CE.  

Point Mode. When defining the configuration, you may choose to either estimate 
adverse health effects in point mode or using percentiles. The point mode simply means 
that BenMAP-CE will use the mean value of the coefficient in the health impact function.  



Chapter 2 – Terminology 

BenMAP-CE User’s Manual March 2023 
2-9 

Population Exposure versus Personal Exposure. Population (or ambient) exposure 
refers to the average air pollution level measured in a grid cell. In contrast, personal 
exposure keeps track over the course of a day the exposure individuals encounter in 
different micro-environments, such as the freeway, outdoors and indoors. BenMAP-CE 
only represents population exposure.  

Population-weighted Air Quality. Modeled or monitored ambient concentrations that 
have been weighted according to the number of people exposed.  

Prevalence Rate. The percentage of individuals in a given population who already have 
a given adverse health condition. Used to calculate changes in health conditions among 
those who already have a health condition, such as asthmatics.  

Random Effects Pooling. Random effect pooling is one method to combine two or 
more distributions of health impact or economic value estimates into a single new 
distribution. This approach allows the possibility that the estimated parameter from 
different studies may in fact be estimates of different parameters, rather than just 
different estimates of a single underlying parameter. 

Regulatory Impact Analysis (RIA). A policy tool used to assess the likely effects of a 
proposed regulation or regulatory change. It usually involves detailed analyses to 
quantify the costs and benefits of the regulation.  

Relative Risk. Relative risk typically is used as a measure of the change in risk of an 
adverse health effect associated with an increase in air pollution levels in an 
epidemiology study. More specifically, it is the ratio of the risk of illness with a higher 
pollution level to the risk of illness with a lower pollution level, where the “risk” is 
defined as the probability that an individual will become ill.  

Rollback. The process by which monitor data are reduced to a different level. BenMAP-
CE rolls back monitor data in three ways. Percentage rollback reduces all monitor 
observations by the same percentage. Incremental rollback reduces all observations by 
the same increment. Rollback to a standard reduces monitor observations so that they 
just meet a specified standard.  

Setup. A BenMAP-CE setup encapsulates all of the data needed to run analyses for a 
particular geographic area—a city, an entire country, etc. These data consist of grid 
definitions, pollutants, monitor data, incidence and prevalence rates, population data, 
health impact functions, variables, inflation rates, and valuation functions.  

Shapefile. A shapefile is a particular type of GIS file, and has a .shp extension. These files 
are accompanied by companion files with .shx and .dbf extensions, and can be used to 
create Shapefile Grid Definitions. See 
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf for more information.  

Sum Dependent Pooling. Summing two or more incidence or valuation results, 
assuming the underlying functions are correlated. For example, summing the incidence 

http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
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of respiratory hospital admissions for two different age groups quantified using C-R 
functions from the same study. 

Sum Independent Pooling. Summing two or more incidence or valuation results, 
assuming the underlying functions are independent (uncorrelated). For example, 
summing the incidence of respiratory hospital admissions quantified using C-R 
functions from different studies using different methods. 

Threshold. BenMAP-CE’s advanced settings for health impact functions allows you to 
specify an air quality threshold; this is an air quality level below which benefits are not 
calculated. For example, if the threshold is 5 µg/m3, then only areas with PM2.5 
concentrations equal to or greater than 5 µg/m3 will be included in estimating health 
incidence results. Specifying a threshold does not affect the shape of the C-R function 
used to quantify impacts.  

Unit Value. A unit value is the estimated mean economic value of avoiding a single case 
of a particular health effect.  

User-defined Weights Pooling. User-defined weights let you specify the weights that 
you want to use when combining two or more distributions of results. The weights 
should sum to one. If not, BenMAP-CE normalizes the weights so that they do.  

Valuation Function. Valuation functions are used by BenMAP-CE to estimate the 
economic values of changes in the incidence of health effects. These are selected within 
an Aggregation, Pooling, and Valuation Configuration (APV Configuration).  

Variable Datasets.  Health Impact functions and valuation functions may sometimes 
refer to variables other than those for which BenMAP-CE automatically calculates 
values.  For example, some valuation functions reference the median income within 
each area of analysis.  To facilitate this, BenMAP-CE allows you to load datasets of 
variables for use in functions, which may be used globally or may vary geographically 
(meaning they are associated with a particular Grid Definition). 

VNA (Voronoi Neighbor Averaging). An algorithm used by BenMAP-CE to interpolate 
air quality monitoring data to an unmonitored location. BenMAP-CE first identifies the 
set of monitors that best “surround” the center of the population grid cell, and then 
takes an inverse-distance weighted average of the monitoring values. This is discussed 
in detail in Appendix B.  

WTP (Willingness to Pay). The willingness of individuals to pay for a good or service, 
such as a reduction in the risk of illness. In general, economists tend to view an 
individual's WTP for an improvement in environmental quality as the appropriate 
measure of the value of a risk reduction. An individual's willingness to accept (WTA) 
compensation for not receiving an improvement is also a valid measure. However, WTP 
is generally considered to be a more readily available and conservative measure of 
benefits.



Chapter 3 – Overview of BenMAP-CE Features 

BenMAP-CE User’s Manual March 2023 
3-1 

 
 

Chapter 3  
 

Overview of  
BenMAP-CE  

Features 
 
 
 
 
 
 
 

In this chapter… 

 Get an overview of the features available with the Core 
Program. 

 Learn about additional BenMAP-CE modules. 
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Upon starting BenMAP-CE for the first time, you will see the following Welcome screen. 

 

The Welcome screen gives a brief description of the user interface and highlights the 
“stoplight” metaphor used in BenMAP-CE to indicate the status of analytical steps 
performed using the tree menu on the left side of the main window.  Clicking the links 
on the left side of the Welcome screen (e.g., Create Air Quality Grids) will provide 
information about each feature.  You will also find a link to the BenMAP-CE website for 
downloading the most current BenMAP-CE software and other reference information.  
If you do not wish to see the Welcome screen at program start-up, check the option 
‘Don’t show this window screen again’ in the lower left-hand corner of the screen.  To re-
enable the Welcome screen, go to Tools menu on the main BenMAP-CE window, select 
Options, and check the option for Show Start Window.  Press OK on the Welcome 
screen to close this window and display the BenMAP-CE main window. 
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The tree menu on the left-hand window pane lists the analytical steps used in the Core 
Program. The tree menu items allow you to perform a highly customized health impact 
analysis. The Tools menu at the top of the screen is for less frequently used functions, 
such as importing and exporting data and special modules described in later sections.  

The first section in this Chapter describes the Core Program features. The second 
section describes the additional functions found in the Tools and Help menus. The next 
section covers BenMAP-CE output options.  Lastly, we answer some frequently asked 
questions.  Note that this chapter provides an overview of functionality, not keystroke 
by keystroke instructions.  Those detailed instructions may be found in Chapters 4 
through 9. 

3.1  Core Program 

Beginning at the main BenMAP-CE window, you can choose the Setup you want to use 
for an analysis by selecting it from the Setup drop-down list. You are then ready to 
begin using the features available through the tree menu.  
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The tree menu takes you through the steps of an analysis. The first step, Air Quality 
Surfaces, allows you to select the pollutant of interest, and then specify the baseline 
and control air quality surfaces. The second step, Estimate Health Impacts, lets you 
choose the population dataset for a particular analysis, and then specify the health 
impact functions to estimate the incidence of adverse health effects. The last step, 
Aggregate, Pool & Value, gives you options for combining the health effects estimates 
and choosing economic valuation functions.  

3.1.1 Create Air Quality Surfaces  

BenMAP-CE is not an air quality model. Instead, it relies on externally-created air 
quality modeling data inputs. To estimate population exposure to air pollution, 
BenMAP-CE combines population data with air quality surfaces, which it generates 
using some combination of air quality modeling and/or monitoring data. In BenMAP-
CE, air quality surfaces can be described as air quality grids (the structure) that have 
been populated with air pollution values (the data). The following is a brief description 
of each step. For detailed instructions, see Chapter 4: Loading Data and Chapter 5: 
Creating Air Quality Surfaces. 

Pollutant 

The Pollutants section of a setup specifies the pollutants that BenMAP-CE will analyze 
and defines the air quality metrics to be used by BenMAP-CE. You are not importing air 
pollution data, but rather naming your pollutants and defining the measures or metrics 
BenMAP-CE will use when assessing the health impacts associated with each pollutant. 

Grid Definition  

Air quality surfaces contain air pollution exposure estimates for a particular Grid 
Definition, as defined in the Modify Datasets window. Grid Definitions are typically 
comprised of either regularly shaped rectangles covering the region of analysis, or 
irregularly shaped polygons corresponding to political boundaries.  

Modeling and Monitoring Data  

To generate air quality grids, you can use air quality modeling data and air quality 
monitoring data in three different ways, as discussed below. However, once generated, 
all air quality grids have the same structure, and have the same *.aqgx extension that 
BenMAP-CE uses to designate these file types.  
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 Model Data. This procedure simply takes raw model data and converts it into a 
file that BenMAP-CE recognizes as an air quality grid. Defining the grid this way 
allows you to directly specify the air pollution values for each grid cell in a Grid 
Definition. 

 Monitor Data. This procedure uses air pollution monitoring data to estimate air 
pollution levels for each grid cell in the selected Grid Definition. This may be 
done using one of three interpolation procedures - Closest Monitor, Voronoi 
Neighborhood Averaging (VNA), or Fixed Radius. With closest monitor, 
BenMAP-CE simply uses the data of the monitor closest to each grid cell's 
centroid. With VNA, BenMAP-CE first identifies the set of monitors that most 
closely "surround" each grid cell, and then calculates an inverse-distance 
weighted average of the data from these neighboring monitors.  With fixed 
radius, BenMAP-CE constrains the VNA interpolation to a user-specified distance 
around each monitor. 

 Monitor Rollback. This procedure allows you to reduce, or roll back, monitor 
data using three methods: Percentage Rollback, Incremental Rollback, or Rollback 
to a Standard. Percentage rollback reduces all monitor observations by the same 
percentage. Incremental rollback reduces all observations by the same 
increment. Rollback to a standard reduces monitor observations so that they just 
meet a specified standard. After the monitor data is rolled back, it may be 
directly interpolated (as in Monitor Data grid creation) or combined with 
modeling data. This approach is described in more detail in Chapter 5: Creating 
Air Quality Grids, as well as in the Appendix A: Monitor Rollback Algorithms. 

Once an air quality grid is created, it can be saved as a .aqgx file and reopened 
without any additional inputs needed.  
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3.1.2  Estimate Health Impacts 

The Estimate Health Impacts section allows you to calculate the change in the 
incidence of adverse health effects associated with changes in air quality. There are 
three steps in the process.  The following is a brief description of each step. For detailed 
instructions, see Chapter 6: Estimating Incidence. 

 Step 1. Specify the Population Dataset and Population Year. 

  
 

 Step 2. Choose the Health Impact Functions that will be used to estimate the 
incidence of adverse health effects.  

 



Chapter 3 – Overview of BenMAP-CE Features 

BenMAP-CE User’s Manual March 2023 
3-8 

 Step 3. BenMAP-CE performs a full Monte-Carlo analysis to quantify the 
confidence intervals around mean incidence and economic value estimates by 
randomly sampling an uncertainty distribution around the effect coefficients or 
willingness to pay estimates. This step typically occurs automatically using 
default parameters for the Monte-Carlo analysis.  However, you may change 
these defaults in Advanced Settings, as shown in the screenshot below.  In 
general, the computation time increases as you specify additional percentiles to 
report from the Monte-Carlo generated distribution. If you want to replicate the 
Monte-Carlo distribution from another analysis, then you may also specify the 
Random Seed.)  Specify the Air Quality Threshold, or a lowest value for air quality 
data. Any observations which fall below this threshold will be replaced with the 
threshold value in all calculations. 

  
BenMAP-CE can store configuration choices in a user-named file with a .cfgx extension, 
and can store incidence change estimates in a user-named file with a .cfgrx extension. 

 

  

BenMAP-CE Decision Point 
 
Once you generate a CFGRX file, BenMAP-CE will have quantified endpoint-specific incidence results, 
expressed as numbers of pollution-attributable cases, for each of the individual health impact 
functions you specified.  At this point, you may: 
 

1. Export your results to complete your analysis. (Proceed to Section 3.3.1) 
2. Continue to the Aggregate, Pool, and Value part of the analysis (Section 3.1.3).  Here you 

may: 
a. Pool (i.e., combine) your incidence results for one or more health endpoints. 

Pooling is useful when you have multiple valid health impact functions for an 
endpoint that generate different results or have multiple subcategories of effects 
within a single endpoint that can be combined. (See Section 7.2.2) 

b. Estimate the economic value of your incidence changes by applying health 
endpoint-specific valuation functions to those results. (See Section 7.2.3) 
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3.1.3 Aggregate, Pool, and Value  

The Aggregate, Pool, & Value (APV) feature on the BenMAP-CE tree menu allows you 
to aggregate and pool previously calculated incidence estimates and place an economic 
value on these pooled and aggregated incidence estimates.  You can also aggregate the 
economic values, and finally pool the aggregated economic values. There are several 
steps in this process. The following is a brief description of each step. For detailed 
instructions, see Chapter 7: Aggregating, Pooling, and Valuing. 

 Step 1. Decide how to aggregate your results. 

 

 Step 2. Decide how to pool and aggregate your incidence results.  
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 Step 3. Decide how you will estimate the economic value of your pooled and 

aggregated incidence results.  

 

 

 

 

 

 

 

 

 

 

 

BenMAP-CE can store APV configuration choices in a user-named file with an .apvx 
extension, and can store APV configuration results in a user-named file with an .apvrx 
extension. You can access both files to use later. 
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3.2 Menus  

There are five menu options found at the top of the main window: File, Setup, Modify 
Datasets, Tools and Help.  

 File. This menu provides options for selecting saved project files (.projx) to open, 
starting a new project file, saving your work in a project file, and exiting the 
program. 

 Setup.  BenMAP-CE comes pre-loaded with datasets for the United States, China, 
and Detroit setups.  The selected setup will be displayed in the menu bar, next to 
the File menu.  You may click on the selected setup to see a menu of available 
setups. Each setup includes the information needed to run analyses for a 
particular geographic area. To learn more about modifying setups, see Chapter 4:  
Loading Data. 

 Modify Datasets. BenMAP-CE stores the information needed to run analyses for 
a particular geographic area, such as a city, region, or nation in a single dataset 
called a setup.  Many users will never need to modify the preloaded setups.  
However, the Modify Datasets menu provides tools to add, modify (load 
additional datasets), or delete these setups if needed.  This is discussed in detail 
in Chapter 4:  Loading Data. 

 Tools. This menu provides access to data import and export functionality in 
addition to a number of other features.  An overview is provided below in 
Section 3.2.1. 

 Help. This menu provides access to a Quick Start Guide (available on EPA’s 
website), information About BenMAP-CE, and a form to Provide Feedback about 
software errors or requested features.  An overview is provided below. 

3.2.1 Tools Menu 

The Tools menu has several options: Aggregate Air Quality Surface, Database Export, 
Database Import, Online Database Export, Online Database Import, Export Air Quality 
Surface, GBD Rollback, Monitor Data Conversion, Neighbor File Creator, PopSim Options, 
and Compute Grid Crosswalks.  A brief description is given below, but further 
information can be found in Chapter 9:  Tools Menu. 

 Aggregate Air Quality Surface. Create a new air quality surface for a specified grid 
definition (e.g., County) from an existing air quality surface created with a 
different (and generally finer) grid definition (e.g., 12km CMAQ).  

 Database Export. Export all or part of BenMAP-CE's internal database to a database 
(.bdbx) file or multiple csv or shapefiles which can later be used on another 
computer or by another user. Manually loading data into BenMAP-CE can be time 
and labor intensive, so this tool can be quite useful in sharing data with other users 
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or computers.   This tool can be used to share all or part of an existing setup, or to 
backup Setups prior to upgrading BenMAP. 

 Database Import. Import data created using the Database Export tool into a 
specified setup.  

 Online Database Export (Feature currently disabled). Allows users to post/share 
data for BenMAP-CE via a cloud-based system.  

 Online Database Import (Feature currently disabled). Allows users to download 
data shared by others for BenMAP-CE via a cloud-based system. 

 Export Air Quality Surface. Generate a text file (.csv) with all of the data in air quality 
surface, including summary statistics such as mean, median, minimum, and maximum.  

 GBD Rollback Tool.  The GBD Rollback tool allows you to select a country, region, 
or group of countries and see the impact of lowering PM2.5 emissions based on 
the data from the 2010 GBD study12.  The outputs include the baseline and policy 
case PM2.5 concentrations as well as the population-weighted air quality change.  

 Monitor Data Conversion. Create a monitor file in BenMAP-CE format using an 
external data file in a different format. 

 Neighbor File Creator. This tool creates a text file (.txt) identifying "neighbor" 
monitors and associated interpolation weights for each grid cell in an air quality grid. 
Identifying the major contributors to air quality in a given cell can be helpful for 
understanding and troubleshooting BenMAP results, and for understanding how 
different geographic patterns of air quality changes can affect health benefits.   

 PopSim. A dynamic population simulation that incorporates the cumulative 
effects of air pollution on different age groups over time.  

 Options.  Select options for start-up and exit screens, validation logs and default set-
ups. 

 Compute Grid Crosswalks. Remove all crosswalks for selected setups and re-create 
them. This tool is for creating or repairing crosswalks which were broken due to 
database error or force quitting of the application. 

  

 
12 Exposure Assessment for Estimation of the Global Burden of Disease Attributable to Outdoor Air Pollution.  
Michael Brauer, Markus Amann, Rick T. Burnett, Aaron Cohen, Frank Dentener, Majid Ezzati, Sarah B. 
Henderson, Michal Krzyzanowski, Randall V. Martin, Rita Van Dingenen, Aaron van Donkelaar, and George D. 
Thurston.  Environmental Science & Technology 2012 46 (2), 652-660 
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3.2.2 Help Menu 

The Help menu has a few options to choose from: Quick Start Guide link, User 
Documentation, About, and a form to Provide Feedback. 

 Quick Start Guide.  A link will open a webpage to the U.S. EPA site for BenMAP-CE 
training materials.  On the webpage, users can download a series of self-paced 
exercises for seven different regions of the world, including two exercises in 
Spanish and one in French.  Each self-paced exercise will take you through the 
basic operations of BenMAP-CE data imports and decision-making. 

 User Documentation. Opens a link to the U.S. EPA site with the BenMAP-CE user 
manual and appendices. 

 About. Opens a window that displays information about the program (e.g., 
software version, contact information, and a suggested citation). You can click on 
Release Notes to read about software modifications and any known issues. 

 Provide Feedback.  This feature allows you to submit any problems that you may 
encounter while running BenMAP-CE or requested features to the BenMAP-CE 
development team.  There are fields to provide your contact information 
(optional) and information about the error or requested feature.  Your feedback 
will be logged into an issue tracking system for U.S. EPA to evaluate. 
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3.3 Outputs  

3.3.1 Results 

If you are interested in viewing or exporting the results of an analysis, these reports can 
be accessed by clicking on the appropriate Results tabs from the upper portion of the 
main BenMAP-CE window.  The number next to the tab description indicates the 
associated “step” of the BenMAP-CE analysis (from the tree menu). 

 

Select the appropriate tab for the type of results you wish to create:  

 Health Impact Results uses a Configuration Results file (with the .cfgrx 
extension) to create a map, data table and bar chart for incidence results based 
on the selected health impact studies.  “Raw” incidence estimates are those that 
have not been aggregated, pooled or valued. See Chapter 6: Estimating Incidence, 
for detailed instructions for creating health impact results. 

 Pooled Incidence Results uses an Aggregation, Pooling, and Valuation Results 
file (with the .apvrx extension) to create maps, data tables and bar charts for 
incidence, aggregated incidence and pooled incidence results. See Chapter 7: 
Aggregation, Pooling, and Valuation, for detailed instructions for creating pooled 
incidence results. 

 Pooled Valuation Results also uses an Aggregation, Pooling, and Valuation 
Results file (with the .apvrx extension) to create maps, data tables and bar charts 
for valuation, aggregated valuation and pooled valuation. See Chapter 7: 
Aggregate, Pool, and Value, for detailed instructions for creating pooled 
incidence results. 

The results data are viewable on the Data tab in the lower right frame of the 
BenMAP-CE main window (see below).  You can also view the results in a GIS Map 
(described in the following section), or simple Chart format.  All results can be exported 
as comma-separated value files (.csv), which can be read into spreadsheet and database 
programs. 



Chapter 3 – Overview of BenMAP-CE Features 

BenMAP-CE User’s Manual March 2023 
3-15 

 

3.3.2 Maps 

GIS Maps can be viewed in the lower right frame of the BenMAP-CE main window. Once 
an air quality surface is displayed, you can choose which layers to view by selecting or 
deselecting items in the GIS table of contents. Spatial layers (except regional 
administrative layers) are semi-transparent so that overlapping layers are viewable. 
You can export a formatted graphics file (e.g., .png format) with the map legend and 
title. For detailed instructions on GIS maps, see Chapter 8: GIS/Mapping.  

3.3.3 Audit Trail Report 

The Audit Trail Report provides a summary of the options selected in the various 
parts of the analysis. You may generate an audit trail with any of the file types used in 
BenMAP-CE: Air Quality Grids (with the .aqgx extension), Configurations (with the .cfgx 
extension), Configuration Results (with the .cfgrx extension), Aggregation, Pooling, and 
Valuation Configurations (with the .apvx extension), and Aggregation, Pooling, and 
Valuation Configuration Results (with the .apvrx extension). The report itself has a tree 
structure. Below is an example of an Audit Trail Report in the default output format.  
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Note that each successive step in an analysis contains a summary of its inputs and 
attributes, and those of each previous step in the analysis, laid out to follow the 
sequence of the inputs provided by the user. Below is an example of an Audit Trail 
Report when nodes have been expanded.  

 

For example, in the above report the attributes of the Health Impact Function file used 
to generate the APV Results are present in the Estimate Health Impacts then Selected 
Health Impact Functions node. Similarly, the metadata for both the baseline and control 
air quality grids are present under the Air Quality Surfaces node.  

The Audit Trail Report is now searchable. You may type a string into the Search text 
box at the bottom right of the Audit Trail Report and the program will highlight the 
location of that string within the report. Below is an example of the Search function.  
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For more information on audit trails, see Chapter 8: GIS/Mapping. 

3.3.4 Dataset Validation Reports 

You may load data to BenMAP-CE to tailor the analysis to your specific needs (click 
Modify Datasets from the main menu).  Loading data requires specific formatting.  
BenMAP-CE offers a validation option to confirm that the proper headings and data 
types are present in the selected file.  The validation routines also check that values are 
within reasonable ranges for certain types of data.  If the file does not meet the 
validation requirements, error and/or warning messages will be reported.  For more 
information about loading and validating data, see Chapter 4:  Loading Data. 

3.3.5 File Types 

BenMAP-CE has a number of file types that you can use to store the settings used in a 
BenMAP-CE analysis, the results of an analysis, as well as maps and reports. Table 3-1 
presents the names of the different file types, their functions, and their default folder 
locations. 
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Table 3-1. File Types Generated by BenMAP-CE 

File 
Extension Description 

Default Folder 
Location1 

*.aqgx Air quality grid. Result\AQG 
*.apvx  Aggregation, Pooling, and Valuation configuration 

specifying the aggregation levels, pooling options, and 
valuation methods used to generate aggregated incidence 
estimates, pooled incidence estimates, valuation estimates, 
aggregated valuation estimates, and pooled valuation 
estimates. 

Result\APV 

*.apvrx Aggregation, Pooling, and Valuation configuration results, 
containing incidence results at the grid cell level, 
aggregated incidence results, valuation results, aggregated 
valuation results, and pooled valuation results. 

Result\APVRX 

*.bdbx BenMAP-CE Database Export tool creates files which can 
contain individual datasets or entire setups.  These are 
saved in a specific format for importing to BenMAP-CE. 

User-specified 

*.cfgx Configuration specifying the health impact functions and 
other options used to generate incidence estimates.  

Result\CFG 

*.cfgrx Configuration results, containing incidence results at the 
grid cell level.  

Result\CFGR 

*.csv  
 

Reports (Results Tables) and PopSim tool results are 
exported as *.csv files, which may be viewed in a text editor, 
or in programs such as Excel.  Users may also export portions 
of BenMAP setups (e.g., baseline incidence rates) as .csv files. 

Result\CFGRX or 
Result\APVRX, 
PopSim 

*.projx Project files save a BenMAP configuration (not results) so 
that users can reload analysis parameters without having to 
repeat the analysis steps. The configurations for the Health 
Incidence and Aggregation, Pooling, and Valuation steps may 
be saved simultaneously in a single project file.  

Result\Project 

*.rtf Validation results from data imports ValidationResults 
*.shp Shape files generated by BenMAP-CE's geographic 

information maps system. These files can be viewed within 
BenMAP-CE or within shape file viewers, such as ArcView.  

AppData\... 
\Shapefiles2 

*.xlsx GBD Rollback Tool results are exported as .xlsx files, which 
may be viewed in a spreadsheet tool such as Excel (there is 
also a .csv option). 

GBD 

1 Most files generated by BenMAP-CE are stored within the User’s directory under C:\Users\<user 
name>\Documents\My BenMAP-CE Files\. 
2 Shape files (*.shp) are stored at  
C:\Users\<user name>\AppData\Local\BenMAP-CE\Data\Shapefiles\<setup name>\. 
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3.4 Frequently Asked Questions  

When creating reports from *.apvrx files, why do some of the variables that I have checked 
appear as “Pooled” or as blanks?  

When results are pooled, some of the identifying information for individual health 
impact functions is not carried forward. For example, when pooling incidence results 
from multiple health impact functions with different study locations, there is no longer 
a unique study location for the pooled result. So, BenMAP-CE would indicate the study 
location as “Pooled.”  

How do I export my results?  

Identify the type of report that you want to create, then refer to the Section 3.3.1 in this 
chapter on exporting reports.  

How do I determine what the Column and Row refer to?  

The Column and Row are variables designed to uniquely identify each grid cell in the 
grid definition. In the case of the County grid definition, the Column refers to the state 
FIPS code and the row refers to the county FIPS code. One way to get a good sense of 
the Column and Row variables is to create a map and then view where particular 
Column and Row variables occur in the map.  
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Chapter 4  
 

Loading Data 
 
 
 
 
 
 
 
 
 
 
 
 
 

In this chapter… 
 Learn how to create a new setup for your project. 
 Learn more about the file structure for data inputs. 
 Learn how to export and import a setup. 
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BenMAP-CE can store the information needed to run analyses for a particular 
geographic area, such as a city, region, or nation, in a single dataset. This dataset is 
called a "Setup" and consists of 10 categories of data: 

 Grid definitions 
 Pollutants 
 Monitor data 
 Incidence and prevalence rates 
 Population data 
 Health impact functions 
 Variable data (socioeconomic variables) 
 Inflation rates 
 Valuation functions  
 Income growth data.  

Grouping the data in this way has a number of 
advantages. It makes it easy to organize and 
view the data, export the data (either a whole 
setup or a portion of a setup), and import 
setups generated by others.   

In this chapter we discuss how to add, modify, 
and delete a setup.  It is important to keep in 
mind that if you delete one part of a setup, you 
may be affecting other parts of the setup. We 
discuss this further below.   

Many users will never need to modify the setup. If you are performing an analysis 
with the pre-loaded United States, China, or 
Detroit setups, you may find that BenMAP-CE 
contains all of the data you need to perform your 
analysis, and no additional modifications are 
necessary.  

We will also discuss how to load (import) data 
into an existing setup. There are a number of 
steps involved in formatting and loading these 
data, so it is important to carefully review the 
steps in this chapter.  For most dataset types, 
BenMAP-CE provides a validation tool to help you 
check your data file format (column names, 
required columns, and data types) before import.  
Validation reports are provided which describe 

Fundamental Concept - Setup 
 
A BenMAP-CE setup refers to the set of 
data files that encapsulates all of the data 
that can be used in BenMAP analyses for a 
particular geographic area—a city, an 
entire country, etc. A setup must contain 
at minimum one or more grid definitions 
for geographic area to which data are 
assigned spatially (e.g., county polygons or 
12 km grid cells); a pollutant definition 
specifying the exposure season and 
relevant exposure metrics (e.g., 8-hour 
max concentration); health incidence and 
population size data; and at least one 
health impact function for the defined 
pollutant in order to run a successful 
analysis. Setups may also include tables of 
air quality monitor data; population size 
and sociodemographic data; economic 
data; and valuation functions. 
 
Once input into a given setup, these data 
are available for application in all 
subsequent BenMAP analyses that use that 
setup, facilitating future runs. 
 
Modeled air quality data files are not 
considered part of the setup; they are 
input into the tool at the time of analysis.  

Decision Point 
 
When do you need to add or modify a 
BenMAP-CE setup?  
 
Setups are generally based on a specific 
geographic area. Hence, you will want to 
add a new setup to analyze a geographic 
area that is not pre-loaded with BenMAP-
CE. Creating a new setup for each 
geographic area you are analyzing will help 
you organize the databases you import. 
 
You will want to modify an existing setup if 
a setup already exists for the geographic 
area to be analyzed but you want to add or 
change one or more of the datasets (e.g., 
adding updated population data and new 
health impact functions to the pre-loaded 
United States setup). 
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any errors or warnings with the associated row number and column name.13   

4.1 Add, Modify, and Delete a Setup    

To add a new setup, modify an existing setup, or delete a setup, choose Modify 
Datasets from the menu bar. This will bring up the Modify Datasets window. The 
United States setup, which comes preinstalled with BenMAP-CE, includes a variety of 
datasets and looks like this: 

  
 

 
13 Validation reports are saved to C:\Users\<user name>\Documents\My BenMAP-CE 
Files\ValidationResults. 
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Add a Setup. To add a setup (e.g., to add a new country that was not pre-loaded with 
BenMAP-CE), click the Add button. The New Setup window will appear where you can 
type a name for the new setup.  

 
After naming the new setup, you can define the elements that comprise a setup.  
Table 4-1 lists the 10 dataset types within BenMAP-CE and indicates which types of 
data are needed to perform certain analyses. 

Table 4-1. BenMAP-CE Data Elements 

Dataset Type 

Required to 
Estimate Health 

Impacts 
Required to Quantify 

Economic Values 
Grid Definitions   
Pollutants   
Monitor Datasets (or 
Modeled Data) 

  

Incidence/Prevalence Rates   
Population Datasets   
Health Impact Functions   
Variable Datasets   
Inflation Datasets   
Valuation Functions   
Income Growth 
Adjustments 

  

 

Some of the elements of a setup are fundamental and should be entered before the 
others, namely, Grid Definitions and Pollutants. The Incidence/Prevalence Rates, 
Population, and Variable Datasets depend on the Grid Definitions, and the Monitor 
and Health Impact Functions datasets depend on the Pollutants that you have 
defined. Therefore, it is best to start by defining your Grid Definitions and Pollutants, 
and then define the other elements of the setup.  

Modify a Setup. To modify a setup, click Modify Datasets on the menu bar.  Choose the 
setup for modification from the drop-down list of Available Setups (the default value is 
United States).  Then, click on the Manage button under one of the ten components 
comprising a setup. The sections below provide more information for each of these 
components.   
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Delete a Setup. To delete a setup, click Modify Datasets on the menu bar.  Choose the 
setup for deletion from the drop-down list of Available Setups. Click the Delete button. 
You will then be asked to confirm your decision.  

 
4.1.1 Grid Definitions 

A BenMAP-CE Grid Definition specifies geographic 
units (i.e., grid cells) that serve two purposes: (1) 
the program assigns air quality data, population 
data, baseline incidence rates, and health impact 
functions to these grids in order to calculate 
impacts; and (2) you can use these grids to report 
results in the GIS tool. You can define a grid in one of 
two ways: by loading a Shapefile (a particular type 
of GIS file) or by specifying a regularly shaped grid 
pattern. These are referred to as Shapefile Grid 
Definitions and Regular Grid Definitions, 
respectively. A Regular Grid Definition is used 
when you want to specify a grid that is regularly 
shaped (e.g., 12 x 12 km squares). A Shapefile Grid 
Definition can be used to create either grids that 
are regularly shaped or grids that match an 
irregular shape, like a political boundary. All 

Shapefile Grid Definitions must contain an attribute table with a unique (i.e., non-
repeating) column and row index. Column and row values should not exceed 1,000,000. 

At least one Grid Definition should be created to outline the area of interest for the 
BenMAP-CE analysis (a city boundary, for example). Additional grid definitions can also 
be created for subdivisions of that area for which (a) data are available (see the Air 
Monitoring, Population, Incidence and Prevalence, and Variables sections below), or (b) 
reports or maps are desired.  

For example, an analysis for the United States might use one or more of the following 
grid definitions:  

 Nation – this Shapefile Grid Definition contains an outline of the United States 
(just the lower forty-eight states), defining an overall area of interest.  

Fundamental Concept – Grid 
Definition 
 
BenMAP-CE Grid Definitions help to 
spatially allocate data used in the 
benefits assessment. They enable users 
to conduct analyses with data sets at a 
variety of spatial scales and to aggregate 
and map results at different scales. 
There are two types of grid definitions: 
Shapefile Grid Definitions and 
Regular Grid Definitions. Typically, a 
Shapefile Grid Definition is used when 
the areas of interest are political. 
boundaries with irregularly shaped 
borders, while a Regular Grid Definition 
is used when the areas of interest are 
uniformly shaped grids (e.g., rectangles). 
All grid definitions must have a unique 
(i.e., non-repeating) column and row 
index. 
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 State – this Shapefile Grid Definition contains state borders, for use in 
generating reports and maps with results aggregated to the state level.  

 County – this Shapefile Grid Definition contains county borders, for use with 
county-based population and incidence rate data.  

 CMAQ 12km Nation – this Shapefile Grid Definition contains grid cells that are 
roughly 12 kilometers on each side, for use with air quality modeling data. 

To start adding or modifying grid definitions, click Modify Datasets on the menu bar.  
Click on the Manage button below the Grid Definitions box. The Manage Grid 
Definitions window will appear. 

 

 
Click on the Add button to display the Grid Definition window. Provide a name for the 
Grid Definition in the Grid ID field and specify the Grid Type: Shapefile Grid or Regular 
Grid. 

When you add a new Setup, you will be asked to select a GIS projection.  The projection 
you specify will be used when performing area- or distance-based calculations on all 
shapefile grid definitions in this setup.  We recommend selecting a regional setting that 
best represents the geographic area you are evaluating from one of the Albers 
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projections provided in the list box.  (For U.S. setups, we suggest 
USAContiguousAlbersEqualAreaConicUSGS.)   

 

If you have reason to choose another type of projection (e.g., in consultation with a 
geospatial analyst), you may check the “Show All” box and select from an expanded list 
of choices.  
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Starting with BenMAP-CE version 1.4, you can apply different health impact functions to 
different air quality grids within the same BenMAP run.  This feature is designed to 
facilitate the application of region-specific air pollution effect coefficients (e.g., you can 
apply a Los Angeles-specific health impact function to that city and a national function 
to the remainder of the United States). If you plan to link specific health impact 
functions to a new grid definition, you must check the “Allow health impact functions to 
be assigned to this area” box in the lower left of the screen.  Checking this box does not 
require you to assign a health impact function to this area, but enables this feature as an 
option.  

Also added in version 1.4, you can now specify whether you want to use a grid 
definition as a default administrative (admin) layer; these layers are useful for showing 
political boundaries in GIS maps of BenMAP results.  By checking the box “Use this layer 
as a default admin layer” you are telling BenMAP to draw this layer on the GIS results 
map by default.  You may select multiple admin layers, such as a country boundary and 
state or province boundaries, and you can turn individual administrative layers on or 
off manually at any point using the GIS tool. 
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4.1.1.1 Regular Grid 

Regular Grid Definitions are defined by a lower left corner (specified as decimal 
degree latitude and longitude, with West and South having negative values and East and 
North having positive values), a total number of columns and rows, a number of 
columns per degree longitude, and a number of rows per degree latitude. Individual 
cells within the resultant grid are numbered in sequential order (columns from left to 
right, rows from bottom to top) starting at (1, 1). These field values will be used to link 
the Regular Grid Definition with other sources of data, as discussed in more detail 
below.  

To define a Regular Grid, start by selecting Regular Grid from the Grid Type drop-
down menu.  Type the name of the grid definition in the Grid ID box, and then define 
the number of Columns and Rows in the grid. To locate this grid geographically, 
provide the decimal degree coordinates for the lower left-hand corner of the grid in the 
Minimum Longitude and Minimum Latitude boxes.  

To give the overall geographic size of the grid, provide the number of Columns Per 
Longitude and Rows Per Latitude. For example, if you specify 16 columns and 2 
columns per degree longitude, then the grid will span 8 degrees of longitude. And if you 
specify 25 rows and 4 rows per degree latitude, then the grid will span 6.25 degrees of 
latitude.  

Combining the numbers in this example, if the minimum longitude and latitude are -81 
and 38 and the grid spans 8 degrees longitude and 6 degrees latitude, then the grid will 
run between -81 and -73 degrees longitude and between 38 and 44.25 degrees latitude. 

After defining the grid, click the Preview button to see what the grid looks like. You 
may change the parameters and click the Preview again to see how the grid changes. 
When you are satisfied with the grid definition, click the OK button. 
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To calculate health impacts and economic benefits, 
BenMAP-CE uses air quality, population, and 
demographic data at different spatial scales.  To do 
this, the program calculates a crosswalk (percentage 
file) that relates data at one spatial scale to another 
(e.g., 12km CMAQ grid to county).  This step is 
performed only once per crosswalk and the results 
are saved to the database for subsequent calculations.   

If you wish to pre-calculate the crosswalk 
(percentage overlap) between this grid definition and 
all other grid definitions in this setup, check the 
option box.  This will take longer to load the data 
now, but can save you time later when you are ready 
to calculate health impacts.  If you do not create the 
crosswalks at the grid definition stage, BenMAP-CE 

Fundamental Concept - Crosswalks 
 
BenMAP-CE calculates crosswalks 
between different grid definitions to relate 
data at one spatial scale to another. For the 
default grid definitions in the U.S. BenMAP 
Setup, EPA developed population-weighted 
crosswalk factors between geographic 
elements using census tract-level 
population data. In all other cases, 
BenMAP-CE calculates a crosswalk 
allocation factor based on the percent 
overlap in area between a geographic 
element of one grid definition and every 
element of another grid. This allows 
BenMAP-CE, for example, to use population 
at the county level with air quality at the 
12km CMAQ grid level in a health impact 
analysis. Crosswalks also allow BenMAP-CE 
to aggregate or disaggregate results to 
various geographic resolutions.  
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will create crosswalks as needed during the configuration or aggregation, pooling, and 
valuing stages. 

The name of your newly defined grid will then appear in the Manage Grid Definitions 
window. You may click Edit to change the grid definition, Delete to permanently 
remove the grid that you just defined, or Add to define a new grid definition. View 
Metadata is not applicable for Regular Grid Definitions.  Click OK to return to the 
Modify Datasets window. 

4.1.1.2  Shapefile Grid  

Shapefiles used to create Shapefile Grid Definitions should be of the ESRI Shapefile 
format.  Details on this format can be found at 
https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf. When a shapefile is 
being used to create a new grid, BenMAP-CE will: (1) check to see if the file is projected 
to GCS NAD 83; and (2) if necessary, re-project the file (with notification) from the 
native projection to GCS NAD 83.  Any shapefiles used must contain integer fields 
named Column (or Col) and Row, and each shape within the shapefile must contain a 
unique combination of values for these two fields. These column and row values are 
used, just as the Column and Row field values in Regular Grid Definitions, to link the 
Shapefile Grid Definition with other sources of data, as discussed in more detail below.   

To add a Shapefile Grid, click on the Add button in the Manage Grid Definitions 
window, choose Shapefile Grid from the Grid Type dropdown menu, name the grid in 
the Grid ID, and browse for the correct shapefile by clicking on the small open-file icon 
just to the right of the Load Shapefile input box.  After locating the file, click Open. This 
will choose the file, and bring you back to the Grid Definition window. To view the 
shapefile, click Preview. You can add metadata using the View Metadata button.  
Adding metadata allows you to supply a file Reference (e.g., person, organization, 
publication, or model that produced or supplied the values in the electronic file) and 
Description (or any relevant notes about the use or limitations of the data).  Other 
minimal file attributes are pre-populated automatically during import. 
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When you are satisfied that the shapefile looks correct and have checked the 
appropriate boxes on the lower left, click OK. This will save the shapefile and bring you 
back to Manage Grid Definitions window.14 Note that the Grid Type box displays the 
type of grid for each of your grid definitions. The View Metadata button will allow you 
to see and edit any comments that were previously entered. 

Click OK when you are finished loading grid 
definitions. The Modify Datasets screen will now 
list the Grid Definitions that you have just created. 
At any time, you may click the Manage button to 
add, modify, or delete grid definitions.  

 
14 Shapefiles are saved to C:\Users\<user name>\AppData\Local\BenMAP-CE\Data\Shapefiles\<setup 
name>\. 

Warning 
 
If you delete a Grid Definition, 
you will also permanently delete 
any gridded data (e.g., Population 
or Incidence) that is dependent on 
it.  
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WARNING! If you delete a Grid Definition, you will permanently delete any gridded 
data that is dependent on it, such as any Incidence/Prevalence, Population, and 
Variable Datasets that use this particular Grid Definition. As we discuss each of these 
other setup elements below, we will describe how this might happen. 

4.1.2 Pollutants 

The Pollutants section of a setup specifies the pollutants that BenMAP-CE will analyze 
and defines the air quality metrics to be used by BenMAP-CE. You are not importing air 
pollution data, but rather naming your pollutants and defining the measures or metrics 
BenMAP-CE will use when performing an analysis for each pollutant. You may include 
any pollutant, though typically air pollutants such as particulate matter, ozone, sulfur 
dioxide, and carbon monoxide are used in a BenMAP-CE analysis.   

A key concept for pollutants is the 
Metric. Air quality metric describes the 
period of the day over which the 
pollutant observations are averaged. For 
example, a metric of D24HourMean is a 
daily average of hourly measurements. A 
metric of D8HourMax is the average of 
the 8-hour period during the day when 
pollutant levels are the highest (see 
Table 4-2 below). The air quality change 
must be expressed in a metric that 
matches the metric used by the health 
impact function; this concept is discussed further below.  

In general, air pollution data in BenMAP-CE is hierarchical – a pollutant can have 
multiple Metrics, each of which has multiple Statistics (these are automatically 
calculated by BenMAP-CE) and which can have multiple Seasonal Metrics. Similarly, 
Seasonal Metrics have multiple Statistics.  Furthermore, air pollution data can be 
provided to BenMAP-CE at any of these levels, in addition to the daily and hourly 
observation level, as described in more detail in Section 4.3.   

 

  

Fundamental Concept – Pollutant Metric 
 
The metric expresses the time period over which 
air quality values are modeled or observed and the 
type of statistic being used (e.g., average, maximum 
or minimum). For example, the metric 
D24HourMean represents the average 
concentration for the sampling day. D8HourMax 
represents the highest of the 8-hour moving 
averages during the day. One pollutant may have 
multiple metrics defined.  In order to use a Health 
Impact Function, the BenMAP pollutant definition 
must include the metric associated with that 
function.   
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Table 4-2.  Example Calculation of D8HourMax 

Hourly Period1 
Hourly average O3 

concentration2 (ppm) 
Moving 8-hour 

average3 D8HourMax4 
07:00 0.000 ---  
08:00 0.005 ---  
09:00 0.010 ---  
10:00 0.015 ---  
11:00 0.020 ---  
12:00 0.025 ---  
13:00 0.030 ---  
14:00 0.035 ---  
15:00 0.040 0.020  
16:00 0.045 0.025  
17:00 0.050 0.030  
18:00 0.055 0.035  
19:00 0.060 0.040  
20:00 0.055 0.044  
21:00 0.050 0.047  
22:00 0.045 0.048  
23:00 0.040 0.049    0.049 
00:00 0.035 0.048  
01:00 0.030 0.047  
02:00 0.025 0.044  
03:00 0.020 0.040  
04:00 0.015 0.035  
05:00 0.010 0.030  
06:00 0.000 0.024  

1 Days for measuring ozone start and end at 7:00 AM local standard time. 
2 Hourly average is the average of individual measurements taken during the 
hour. 
3 Moving 8-hour average is the average of the hour and the proceeding 7 
hours. 
4 D8HourMax is the maximum of the moving 8-hour averages. 
Reference:  Federal Register 79 FR 75233, Dec. 17, 2004. 
https://www.federalregister.gov/articles/2014/12/17/2014-
28674/national-ambient-air-quality-standards-for-ozone#h-193 
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Add a Pollutant  

Air pollution data in BenMAP-CE is of two types:  (1) point source monitoring data and 
(2) Grid Definition-based modeling data. For both types, the data must be associated 
with a particular pollutant. Table 4-3 describes these variables used to define a 
pollutant in BenMAP-CE. 

Table 4-3. BenMAP-CE Pollutant Definitions 

Pollutant Field Name Notes 
Pollutant ID  
 

Unique name for the pollutant which will be referenced in 
health impact functions, associated with monitoring and 
modeling data, etc.  

Observation Type  
 

Pollutants may have hourly observations or daily 
observations. In the United States, Ozone has hourly 
observations, while PM10 and PM2.5 have daily 
observations. 

Metrics  
 

Daily values calculated directly from daily observations, 
or through various mathematical manipulations of hourly 
observations. Typical ozone metrics include the highest 
hourly observations during the course of each day, the 
mean of all twenty four hourly observations, etc. 

Seasonal Metrics  
 

Seasonal values calculated from metric values. In the 
United States, for example, quarterly means are calculated 
for PM2.5 from daily means. 

 

To add pollutant definitions to BenMAP-CE, click Modify Datasets on the menu bar.   
Then click on the Manage button below the Pollutants group. The Manage Pollutants 
window will appear. Here you may click Add to add a new Pollutant, Delete to remove 
a previously defined pollutant, or Edit to modify an existing pollutant.  
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To start defining a pollutant, click the Add button and the Pollutant Definition 
window will appear. In the Pollutant ID box, you give a unique name for the pollutant 
(e.g., PM2.5), and then define the characteristics of this pollutant – the Observation 
Type and Metrics. 

  
 

The Observation Type identifies whether a pollutant is measured Hourly or Daily. In 
the United States, ozone, sulfur dioxide, carbon monoxide, and others have hourly 
observations, while particulate matter has daily observations.  

Next you need to define a pollutant's Metrics. A pollutant has to have one or more 
metrics, which are daily values calculated directly from daily observations, or through 
various mathematical manipulations of hourly observations. 

To add a Metric, click on the Add button below the Metrics box in the Pollutant 
Definition window. A default name ‘Metric 0’ will appear in the box. Since the default 
name is not very descriptive of a metric, it is best to change the name. Typical names 
used for metrics given in Table 4-4. These are provided just as an example, you may use 
any names that you like. However, keep in mind that the names that you use for your 



  Chapter 4 – Loading Data 

BenMAP-CE User’s Manual  March 2023 
 4-17 

metrics need to be consistent with the metric names that you include in your air 
pollution monitoring and modeling data, as well as your health impact functions. (We 
will discuss this further below.) Additionally, metric names are used to display 
pollutant concentrations in BenMAP-CE's mapping window. As such, they must be 
consistent with GIS naming conventions, meaning they must begin with a letter, and 
may only contain letters, numbers, and underscores.  

Table 4-4. Examples of Metric Names 

Name Description 
D1HourMax Highest hourly value from 12:00 A.M. through 11:59 P.M. 
D8HourMax Highest eight-hour average calculated between 12:00 A.M. and 11:59 

P.M.  
D24HourMean Average of hours from 12:00 A.M. through 11:59 P.M.  

 

4.1.2.1  Hourly Metrics  

Pollutants that are measured hourly (Observation Type = Hourly), such as ozone, 
sulfur dioxide, carbon monoxide, and others, must be characterized by a daily metric, 
which mathematically summarizes the hourly observations.  

Table 4-4 lists some of the ways that metrics can be generated from hourly values. Note 
that these metrics are not arbitrarily chosen, and instead match the metrics used in 
epidemiological studies.  

The Detail section of the Pollutant Definition window lets you define the metrics that 
you want to use. There are three options that you may choose using the Hourly Metric 
Generation drop-down list: Fixed Window, Moving Window, and Custom.  

The Fixed Window option lets you define simple metrics which are calculated as 
statistics over a fixed window of hours (Start Hour and End Hour) within each day. 
The Start Hour should be less than or equal to the End Hour, and both can range from 
0 to 23, where 0 stands for the period 12:00 am to 12:59 am, and 23 stands for 11:00 
pm to 11:59 pm. The Statistic includes the Mean, Median, Max, Min, and Sum. Some 
examples follow: 

 D24HourMean: The mean of the observations from 12:00 am through 11:59 
pm. Start Hour = 0. End Hour = 23. Statistic = Mean.  

 D1HourMax: The highest hourly value of the observations from 12:00 am 
through 11:59 pm. Start Hour = 0. End Hour = 23. Statistic = Max.  

 D12HourMean: The mean of the daylight observations, defined as the period 
from 8:00 am through 7:59 pm. Start Hour = 8. End Hour = 19. Statistic = Mean. 
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The Moving Window option lets you consider metrics that are not based on the same 
set of hours each day. The Window Size defines the number of hours that will be 
considered together. The Window Statistic defines how the hours in the Window Size 
will be characterized. And the Daily Statistic defines how BenMAP-CE will use the 
statistics generated for each window.  

For example, consider the highest eight-hour mean (D8HourMax) over the course of a 
day. You would have the following settings: Window Size = 8. Window Statistic = 
Mean. Daily Statistic = Max. BenMAP-CE would calculate every possible eight-hour 
mean, starting with the eight-hour mean from 12:00 am through 7:59 am, and ending 
with the eight-hour mean from 4:00 pm through 11:59 pm. This would generate 17 
possible eight-hour means. BenMAP-CE would then choose the eight-hour mean that 
has the highest value (see Table 4-2 above for an example). 
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The Custom tab lets you define Metrics using a mathematical function that you specify. 
These functions can include measures such as the sum of the number of hours of ozone 
exposure above 60 ppb. The possibilities are quite diverse, as evidenced by the range of 
functions and variables available for use as shown in Table 4-5. However, the syntax for 
using these functions is somewhat involved, so we have reserved discussion of this for 
the Appendix M:  Function Editor. 
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Table 4-5. Available Functions and Variables for Custom Metrics 

Name Description 
Functions 

ABS(x) Returns the absolute value of x. 
EXP(x) Returns e the power x, where e is the base of the natural 

logarithm. 
IPOWER(x,y) Returns x to the power y (y an integer value). 

LN(x) Returns the natural logarithm of x. 
POWER(x,y) Returns x to the power y (y a floating point value). 

SQR(x) Returns the square of x. 
SQRT(x) Returns the positive square root of x. 

Variables 
Observations[i] All hourly observations for the year (index begins at zero, 

typically ranging to 8,760). 
DailyObservations[i] All hourly observations for the day (indexed zero to twenty- 

three). 
SortedObservations[i] All hourly observations for the day, sorted from low to high 

(indexed zero to twenty-three). 
Day Index of the day whose metric value is being generated (index 

begins at zero). 
Mean Mean of the daily observations. 

Median Median of the daily observations 
Min Minimum of the daily observations. 
Max Maximum of the daily observations. 
Sum Sum of the daily observations. 

NoObservation Flag value indicating a missing observation (-345) 
 

4.1.2.2 Manage Seasons for Individual Pollutant Metrics 

Manage Seasons for Individual Pollutant 
Metrics allow you to aggregate daily Metric 
values over a portion of the year that you define. 
This has a number of uses. For example, if 
pollutant values vary greatly by season of the 
year, you can calculate separate pollutant 
measures for each season of interest. You might 
be interested in Dry Season versus Wet Season, or 
differences between Winter, Spring, Summer, 
and Fall.  

To add seasonal metrics for individual pollutant metrics, first select the metric of 
interest (e.g., D24HourMean), then click on the Edit button below the Manage Seasons 

Fundamental Concept - Seasonal Metric 
 
A Seasonal Metric allows you to define 
portions of the year over which to aggregate 
daily air quality metrics.  For example, you 
could create a warm season and cold season 
for D8HourMax ozone and calculate an 
average WarmSeasonD8HourMax ozone 
value and an average 
ColdSeasonD8HourMax to use in an analysis 
of seasonal health impacts.  
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for Individual Pollutant Metrics box. The Manage Seasons for Individual Pollutant 
Metrics window will appear.  

To add a Seasonal Metric, click on the Add button below the Seasonal Metrics box. A 
default name Seasonal Metric 0 will appear in the box. Since the default name is not very 
descriptive, it is best to change the name to something more informative such as the 
QuarterlyMean. As with the Metric names, keep in mind that the Seasonal Metric names 
need to be consistent with the metric names that you include in your air pollution monitoring 
and modeling data, as well as your health impact functions.  

The next step is to define the seasons that you want associated with your Seasonal 
Metric name. For example, in the case of a Quarterly Mean, you would want to define 
four seasons. To start this process, click on the Add button below the Seasonal Metric 
Seasons box. Then, in the far right side of the window under Selected Season Details, 
give the Start Date and End Date for each season. To change the date, click on the month or day, 
and use the arrows to change the month or day accordingly. 

  
 

Next, you need to choose the Statistic tab or the Custom Function tab to determine 
how the daily Metrics will be combined in each season. For example, you might choose 
the Mean from the drop-down list on the Statistics tab. This would calculate the mean 
of the daily metrics in each season. The Custom tab allows seasonal metric values to be 
calculated using customized functions, similar to those used to calculate daily metric 
values from hourly observations. See Appendix M:  Function Editor for more detail on 
this topic.  
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Once you have finished defining the Seasonal Metrics, click OK to return to the 
Pollutant Definition window.  

Click OK after defining each Pollutant.  This will return you to the Manage Pollutants 
window. 

  
 

4.1.2.3  Define Seasons for all Pollutant Metrics  

The Define Seasons for all Pollutant Metrics button on the Pollutant Definition 
window allows you to associate Seasons with a Pollutant and all of its associated 
metrics. These seasons differ somewhat from the Seasonal Metrics defined for 
individual pollutant metrics (discussed above). They are used to define:  

 The portion of the year for which 
benefits are calculated for a Pollutant. 
You can think of Seasons as defining 
this period of the year “globally” for 
the pollutant, as it affects the portion 
of the year over which both Metrics 
and Seasonal Metrics are calculated. 
For example, in the United States 
ozone benefits are often only 
calculated for the ozone season, from 
April 1 through September 30.  

 The portion(s) of the year for 
which missing pollutant 
concentrations are filled in by 
BenMAP-CE. That is, in order to 

Fundamental Concept – Global Season 
 
Defining Seasons (or Global Seasons) for all pollutant 
metrics constrains a pollutant’s benefits analyses to a user-
specified portion of the year. For example, if you define the 
Global Season for ozone as April 1 – September 30, then 
BenMAP-CE will only calculate benefits during that 
window for each metric associated with ozone. Any 
Seasonal Metrics should be contained within and 
collectively span the Global Season. For example, for a 
Global Season of April 1 – Sept. 30, you might define a 
Seasonal Metric to analyze health impacts in early summer 
(April 1 – June 30) vs. late summer (July 1 – Sept 30).  
 
A Global Season also defines the portion of the year for 
which missing pollutant concentrations are estimated in 
by BenMAP-CE and how the replacement value is 
calculated (e.g., days with missing air quality data may be 
replaced with the average value from the Global Season). 
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calculate benefits, BenMAP-CE in certain cases needs to generate complete sets 
of metric values by estimating concentrations for those days that have missing 
observations. This can be important if certain seasons tend to have more missing 
values than others.  

To define Seasons for a Pollutant, click the Define Seasons for all Pollutant Metrics 
button. This will bring up the Define Seasons window. For each season desired, click 
the Add button, select the appropriate Start Date and End Date, which define the days 
included in the season; and the appropriate Start Hour and End Hour, which define the 
hours included in monitoring period. The advanced options for PM2.5 look like the 
following: 

  

 
 

Once you have finished defining the Seasons, click OK to return to the Pollutant 
Definition window.  

If you later wish to View or Edit a particular Pollutant definition, simply select the 
appropriate Pollutant within the Available Pollutants box and click the Edit button. 
When you are done, click OK to return to the Modify Datasets window.  

After defining all of the pollutants that you want, click OK. This will return you to the 
Modify Datasets window.  

4.1.3 Monitor Datasets 

The Monitor Datasets section of the Modify Datasets window allows you to add air 
pollution monitoring data to your setup. Air pollution monitoring data may be used to 
estimate ambient pollution levels in each grid cell defined by a Grid Definition. 
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BenMAP-CE uses a variety of procedures (such as Voronoi Neighbor Averaging, 
discussed later) to interpolate the monitor data points across the area of interest.  

NOTE: Air pollution data in BenMAP-CE is of two types: (1) point source monitoring 
data and (2) Grid Definition-based modeling data. Both types of data must be 
associated with a particular pollutant that you have already defined. Only the point 
source monitoring data is stored in the setup database. The modeling data are loaded 
into BenMAP-CE as you need them for a particular analysis.  

4.1.3.1 Add Monitor Datasets  

To start, click on the Manage button below the Monitor Datasets box. The Manage 
Monitor Datasets window will appear. From this window you may Add monitoring 
data, view and Edit existing datasets, as well as Delete them. The section on the left 
under Available Datasets lists the monitor datasets that are currently in the setup. The 
section on the right under the Dataset Contents identifies the number of monitors in 
each dataset by Pollutant and by Year.  To view the metadata of a particular monitor 
dataset, select an Available Dataset and click on a row from the Dataset Contents, 
then click the View Metadata button.  This allows you to view further information 
about references or descriptions of the file. 
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To start adding data, click the Add button. This will bring up the Monitor Dataset 
Definition window. Give the dataset a name in the Dataset Name box, choose the 
appropriate pollutant from the Pollutant15 drop-down menu, and then type the 4-digit 
Year of the data in the Year box. 

NOTE: The Dataset that you define can have one or more pollutants and multiple years 
of data (e.g., representing a particular monitoring network).  However the data must be 
imported one pollutant and one year at a time.  

  
 

Monitor data must be formatted in a database file, with monitor definition information 
and monitor values in a single line.  

After specifying the Pollutant and Year, click on the Load Data From File button to 
bring up a window from which you can Browse the BenMAP-CE Data directory to find 
the desired data file. Click Open, to choose the file.  

 
15 The pollutants in the Pollutant drop-down menu have been defined under the Pollutants box on the 
Modify Datasets window. 
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Users are advised to click the Validate button before loading the monitor dataset.  
BenMAP-CE’s validation tool will review the file format (column names, required 
columns, and data types) and provide a report with any errors or warnings.16   The user 
also has the option of adding metadata to the file to save references and comments 
about that specific file.  To add metadata, click the View Metadata button.  After 
passing validation (and adding metadata if desired) click the OK button to bring you 
back to the Monitor Dataset Definition window.  

Repeat this procedure to load all of your monitoring data.  If you try to load the data for 
the same pollutant/year combination, BenMAP-CE will warn you of the duplication.  

 
To see the years of data and the number of monitors each year, use the scrollbars on the 
bottom and on the right of the Dataset Contents box. To view the metadata for a 
particular entry in the dataset, choose an Available Dataset and row in the Dataset 
Contents and click the View Metadata button. 

To delete existing datasets, select the dataset in the Available Datasets list and click 
the Delete button.  To edit an existing dataset, select the dataset in the Available 

 
16 Validation reports are saved to C:\Users\<user name>\Documents\My BenMAP-CE 
Files\ValidationResults. 
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Datasets list and click the Edit button.  (Note:  Certain pre-loaded datasets cannot be 
edited.  Instead if you select one of these, you will have the option to Copy the locked 
dataset and then you can edit the copied dataset.) 

When you have finished loading your monitor data, click OK in the Manage Monitor 
Datasets window. This will take you back to the Modify Datasets window, which will 
show the name of the Dataset(s) that you just entered.  

4.1.3.2 Format for Monitor Data  

Monitor data is required to be formatted in a single database file, with monitor 
definition information and monitor values in a single line. Tables 4-6a and 4-6b list the 
variables in the monitor dataset and provide a sample of what a data file might look 
like.  

NOTE: The monitor data files do not specify the pollutant with which the data is 
associated—this is specified by the user when loading the monitor data into 
BenMAP-CE.  
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Table 4-6a. Required Format, Air Monitoring Data File Variables  

Variable  Type  Required Notes 
Monitor Name  Text  Yes Unique name for each monitor in a particular location.  
Monitor 
Description 

Text  No Description of the Monitor.  

Longitude Numeric 
(double) 

Yes Values should be in decimal degree format. Values in 
the eastern hemisphere are positive, and those in the 
western hemisphere are negative.  

Latitude  Numeric 
(double) 

Yes Values should be in decimal degree format. Values in 
the northern hemisphere are positive, and those in the 
southern hemisphere are negative.  

Metric Text No This variable is either blank (signifying that the Values 
are Observations, rather than Metric values), or must 
reference an already defined Metric (e.g., 1-hour daily 
maximum) for the appropriate Pollutant. 

Seasonal 
Metric 

Text No This variable is either blank (signifying that the Values 
are not Seasonal Metric values) or must reference an 
already defined Seasonal Metric for the Metric (e.g., 
mean of the 1-hour maximum values for the months of 
June through August). 

Statistic Text No This is an annual metric, which is either blank 
(signifying that the values are not annual statistics) or 
must be one of: None, Mean, Median, Max, Min, Sum. 
(e.g., mean of the 1-hour maximum for the year) 

Values Text Yes If Metric is blank, values are supplied as a comma-
delimited string of values for the year [e.g., 365 or 366 
(leap year) values for daily data, 8760 or 8784 (leap 
year) values for hourly data]. If Metric is defined, but 
Seasonal Metric and Statistic are blank, 365 or 366 
metric values. If Seasonal Metric is defined, but 
Statistic is blank, n seasonal metric values. If Statistic is 
defined, one annual statistic value for either the Metric 
(if Seasonal Metric is blank) or the Seasonal Metric. 
Missing values are signified with a period (‘.’). 
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Table 4-6b. Required Format, Sample Air Monitoring Data File  

 
 

4.1.4  Incidence and Prevalence Rates Data  

Most health impact functions, such 
as those developed from log-linear 
or logistic health impact functions, 
estimate the percent change in a 
health effect associated with a 
pollutant change. In order to 
estimate the absolute change in 
incidence using these functions, the 
baseline incidence rates (and in 
some cases the prevalence rate) of 
the adverse health effect are 
needed.  

The incidence rate is the number of 
health effects per person in the 
population per unit of time, and the 
prevalence rate is the percentage of 
people that suffer from a particular 
chronic illness. For example, the 
incidence rate for asthma attacks 
may be 25 cases per asthmatic individual per year, and the prevalence rate (measuring 
the percentage of the population that is asthmatic) might be six percent of the total 
population.  

Fundamental Concepts – Incidence and Prevalence 
 
Incidence is a measure of the total number of new 
occurrences of an adverse health impact in a geographic area 
over time. The incidence rate is the average number of 
adverse health effects (e.g., respiratory hospital admissions) 
per person per unit of time, typically a day or a year. The 
incidence rate must be expressed at the same time scale as 
the specified by the health impact function. For example, a 
health impact function quantifying day-to-day changes in 
premature death requires a daily mortality rate. The baseline 
incidence rate, also called the background incidence rate, 
is the incidence of a given adverse effect due to all causes 
including air pollution. BenMAP typically estimates and 
reports benefits as the change in incidence between the 
Baseline and Control scenarios, (e.g., the number of avoided 
asthma Emergency Department visits).  
 
The prevalence rate is the percentage of individuals in a 
given population at a given point in time who are 
experiencing or have been diagnosed with a given adverse 
health condition (e.g., the prevalence of asthmatics among 
children 0 – 17). It may be required for certain health impact 
functions, such as those that focus on asthmatics or other 
groups exhibiting a co-morbidity.  
 



  Chapter 4 – Loading Data 

BenMAP-CE User’s Manual March 2023 
4-31 

NOTE: For both incidence and prevalence rates, BenMAP-CE allows the user to have 
rates that vary by race, ethnicity, gender, and age group. BenMAP-CE can support 
multiple sets of incidence and prevalence rates, if the rates differ by year or by grid 
definition.  

4.1.4.1 Add Incidence/Prevalence Rates 

To start adding baseline incidence and prevalence data files, click on the Manage 
button below the Incidence/Prevalence Rates box. The Manage Incidence Datasets 
window will appear.  

 
In this window you may Add, Edit, and Delete datasets. The section on the left under 
Available Datasets lists the incidence/prevalence datasets that are currently in the 
setup. The section on the right under the Dataset Incidence Rates identifies the rates 
in the selected dataset.  

To add a dataset, click the Add button. This will bring up the Incidence Dataset 
Definition window. Give a name to the dataset that you are creating by typing a name 
in Dataset Name box. 
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NOTE: If you have multiple incidence or prevalence datasets that vary, for example, by 
year and grid definition, then use the name to provide a reference to the year and grid 
definition (e.g., “Mortality Incidence (2000)”).  

In the Grid Definition drop-down list choose the item that matches the grid definition 
used to develop the incidence/prevalence dataset. Note:  The incidence and prevalence 
rate data must use the same column/row information as the matching grid definition.  
Click the Load From File button. Then click on the Browse button, to browse for the 
dataset file. (The format for the dataset is detailed in the next sub-section.) 
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After locating the file, click Open. Click the Validate button before loading the data.  
BenMAP-CE’s validation tool will review the file format (column names, required 
columns, and data types) and provide a report with any errors or warnings. You also 
have the option of adding metadata to the dataset.  This is done by clicking the View 
Metadata button and adding any references or descriptions that you see fit.  Click OK 
on the Load Incidence/Prevalence Database window to load the selected file.  The 
Incidence Dataset Definition window will appear, displaying the rates in the data file 
that you just loaded. 

 



  Chapter 4 – Loading Data 

BenMAP-CE User’s Manual March 2023 
4-34 

 

If the data look correct, click OK. This will return you to the Manage Incidence 
Datasets window.  To view any metadata that was added, select an Available Dataset 
and a Rate, and click the View Metadata button.  The user can view or edit the 
metadata of the imported files. 

 
Follow the same procedure for any additional 
incidence/prevalence datasets that you want 
to add to the setup database. When you have 
finished adding data, click OK in the Manage 
Incidence Datasets window. The 
Incidence/Prevalence Rates box in the Modify 
Datasets window will show the datasets that 
you have entered.  

4.1.4.2  Format for Incidence/Prevalence Data  

Table 4-7a presents the variables that can be used in incidence and prevalence datasets, 
and Table 4-7b presents a sample dataset that follows this format.  

  

Warning 
 
In order to use a baseline incidence or 
prevalence rate data with a particular health 
impact function, the Endpoint Group and 
Endpoint of the baseline incidence or 
prevalence rate must match the Endpoint 
Group and Endpoint of the health impact 
function exactly. 
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Table 4-7a. Health Incidence and Prevalence Dataset Variables  

Field Name Type Required  Notes 
Endpoint Group  Text Yes  If this does not reference an already 

defined Endpoint Group, one will be 
added.  

Endpoint Text Yes  If this does not reference an already 
defined Endpoint for the Endpoint Group, 
one will be added.  

Race  Text No  Should either be blank (signifying All 
Races) or reference a defined Race, such as 
"Black" (from one or more Population 
Configurations).  

Ethnicity  Text  No  Should either be blank (signifying All 
Ethnicities) or reference a defined 
Ethnicity, such as "Hispanic" (from one or 
more Population Configurations).  

Gender  Text  No  Should either be blank (signifying All 
Genders) or reference a defined Gender 
(from one or more Population 
Configurations).  

Start Age  Integer Yes Specifies the low and high ages, inclusive. 
For example, Start Age of "0" and End Age 
of "1" include infants through the first 12 
months of life and all one-year old infants.  

End Age Integer Yes 

Column  Integer  Yes The Column and the Row link the 
incidence/prevalence data with cells from 
a Grid Definition.  Row  Integer  Yes 

Value  Numeric 
(double)  

Yes The incidence/prevalence rate for the 
specified demographic group for this 
location.  

Type Text  No If value is a prevalence rate, then 
“Prevalence” should be specified. 
Otherwise BenMAP-CE assumes that the 
value is an incidence rate. 
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Table 4-7b. Sample Health Incidence Dataset 

 
 
4.1.5 Population Data  

The population data is used to estimate 
population exposure and in turn any 
adverse health effects associated with a 
change in air pollution. BenMAP-CE 
allows you to specify race, ethnicity, 
gender, and age of the population, as well 
as the year of the population estimate.  

Population data loaded into BenMAP-CE 
must be associated with a Population 
Configuration, which defines the races, 
ethnicities, genders, and age ranges 
present in the data. Race, ethnicity, and 
gender are unique text values 
representing population subgroups. Age 
ranges are defined by integer values for 
starting age and ending age (inclusive), 
and a unique text value representing the 
name of the age range. For example, 
‘0TO1’ might be used as a name for the 
age range defined by a start age of zero 
and an end age of one, thus consisting of 
infants through the first twelve months 
of life and all one-year old infants. The population data provided to BenMAP-CE should 
then contain population values for all combinations of race, ethnicity, gender, and age 
range. The population values may be non-integer values.  

Population data must also be associated with a Grid Definition which specifies the 
geographic areas for which the data is available (see for more details the section on 
Grid Definitions). If population data is available for multiple grid definitions (cities and 

Fundamental Concept – Population Configuration 
 
BenMAP-CE requires population data in order to 
estimate the adverse health effects associated with a 
change in air pollution. Population data may be 
stratified by age, sex, race, and ethnicity. To add 
population data in BenMAP-CE, you must first specify 
a population configuration. The population 
configuration is a template that specifies the 
categories into which your population data are 
organized – specifically, the race, ethnicity, gender, 
and age group subdivisions present in the population 
data you are planning to input. Stratifying your data 
by these categories is not required, but detailed 
population data allows you to more accurately 
estimate health impacts by better aligning your data 
with the study populations of health impact research. 
It also allows you to estimate and report benefits by 
age group, sex, race and/or ethnicity (e.g., asthma 
symptoms in African American males aged 5-17) that 
may be useful to support environmental justice 
analyses. 
 
In the U.S. setup, BenMAP-CE uses 2010 U.S. Census 
block data to forecast the population in future years 
at various spatial resolutions. Sources of population 
data will vary by country and are generally available 
from the country’s governmental agency responsible 
for collecting demographic and population data. 
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neighborhoods, for example), you can have the option of using different sets of 
population data for different analyses.  

BenMAP-CE can also estimate populations for Grid Definitions for which no population 
data is available by calculating spatial overlap percentages with Grid Definitions for 
which data is available.  

4.1.5.1 Add Population Data 

To add population data to BenMAP-CE, click on the Manage button below the Population 
Datasets box in the Modify Datasets window. The Manage Population Datasets window 
will appear.  

 
Click on the Add button to display the Load Population Dataset window.  Name the 
dataset using the Population Dataset Name box.  

The Grid Definition drop-down list provides the list of existing grid definitions.  
Choose a grid definition that matches your population dataset. 

The Population Configuration section allows you to define the variables that are in the 
population data file to be loaded into BenMAP-CE. Use the drop-down list to choose an 
existing population configuration and then view it by clicking the View button, or you 
may click the Add button and define a new population configuration.  Clicking the Add 
button will open a Population Configuration Definition window where you can enter 
the fields that appear in the file that will be later uploaded (discussed in more detail 
below). 
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The Browse button to the right of the Database box allows you to find the data file that 
you want to load into BenMAP-CE. Once you click Open and load the file, the Validate 
and View Metadata buttons become active.  You can click the Validate button before 
the file is loaded into the Manage Population Datasets form.  BenMAP-CE’s validation 
tool will review the file format (column names, required columns, and data types) and 
provide a report with any errors or warnings. You can also add metadata, which 
includes references and descriptions, by clicking the View Metadata button. 

 
 

If you wish to run an analysis based on an air quality grid not already defined in 
BenMAP-CE, you may need to import a new population file matched to that grid 
definition.  The PopGrid program allocates the 2010 block-level U.S. Census population 
to a user-defined grid, creating a population file ready for importation to BenMAP-CE.17 

The Use Population Growth Weights checkbox should be checked when using population 
data generated by the PopGrid software application. The population weights file assists 
in forecasting population levels. See Appendix J for a more detailed discussion of 
population growth weights in the United States setup.  

 
17 The PopGrid program may be downloaded from EPA’s website.  See: 
http://www2.epa.gov/benmap/benmap-community-edition. 

http://www2.epa.gov/benmap/benmap-community-edition
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Defining a Population Configuration  

If you are performing an analysis outside of the U.S. and are loading your own 
population data, you will need to first create a new Population Configuration. The 
Population Configuration defines the age range (Start Age and End Age), Race, 
Ethnicity, and Gender variables in your population database.  

Check that your population variables align with the 
population configuration already defined for your setup 
(the spellings must match exactly).  If your data fails to 
load correctly, you will need to go back and either 
develop a new population configuration to match your 
data, or you need to revise your population database so 
that it matches the population configuration.  

To add a population configuration, click the Add button in the Load Population 
Dataset window. 

 
In the Population Configuration Name box, replace ‘PopulationConfiguration0’ with a 
name of your choosing. Under the Races box click on New and type in the name for any 
races present in your population data. The names appear in both the Races list box and 

Warning 
 
It is critical that the age, race, 
ethnicity, and gender variables 
defined in the population 
configuration match your 
population input data exactly. 
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the Available Races list box. (If you later create alternative population configurations, 
you can simply drag the relevant names from the Available Races list box into the 
Races list box.) Similarly, under the Available Genders and Available Ethnicity list 
boxes, click on New and type in the name for any ethnicity and gender identifiers 
present in your population data.  

If you want to remove a selected category from the Races, Genders, or Ethnicity list 
boxes, then highlight the category that you want to deselect and click the Remove 
button. (It is not possible to delete categories from the Available Races, Available 
Genders, or Available Ethnicity list boxes.)  

The next step is to create the age ranges that match the age ranges in your population 
file. To start click on the Add button below the Age Ranges list box. The AgeRange 
Definition window will appear. You do not need totype anything in the Age Range ID 
box. You can enter the upper end of the age range into the High Age bound box, which 
will automatically populate the Age Range ID. The Age Range ID will be in the format 
LowAgeTOHighAge (e.g., 0TO0, 1TO17, 18TO25, etc.) For the next age range, BenMAP-
CE will automatically fill in the value for the Low Age box based on the previous range 
you entered. For example, the age range names (with corresponding low and high ages) 
might include the following: 0to0, 1to4, 5to9, 10to14, 15to19, 20to24, 25to29, 30to34, 
35to39, 40to44, 45to49, 50to54, 55to59, 60to64, 65to69, 70to74, 75to79, 80to84, and 
85up. You must be sure that the population configuration names exactly match those in 
your population input file.  

 
Click OK when you have defined the age range. If you make a mistake and want to 
delete an age definition after you have entered it, select the age range you would like to 
delete then click on the Delete button. The population configurations can be quite 
detailed, as in the case of the United States Census population configuration that comes 
loaded with BenMAP-CE. 
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Click OK on the Population Configuration Definition window to return to the Load 
Population Dataset window.  

Click OK on the Load Population Dataset window to return to the Manage 
Population Datasets window.  To view or edit any metadata that was previously 
added, click the View Metadata button.  Click OK on the Manage Population Datasets 
window. In the Population Datasets box of the Modify Datasets window you should 
see an entry for the population dataset that you just loaded.  
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4.1.5.2  Format for Population Data  

Table 4-8 presents the variables that can be used in population datasets. Note that the 
names you define for age ranges do not need to follow the same pattern used in this 
manual; the age ranges should be based on what seems most appropriate for you. 
However, it is critical that the age, race, ethnicity, and gender variables in your 
population input data exactly match those defined for the population configuration, 
otherwise BenMAP-CE will fail to load the population data. 

Table 4-8. Population Dataset Variables  

Variable Type Required Notes 
AgeRange  Text Yes References a defined age range in the 

associated Population Configuration. 
Column Integer Yes The column and the row link the 

population data with cells in a Grid 
Definition.  

Row Integer Yes 

Year Integer Yes The year of the data. Note that this may 
include historical population estimates 
(such as from a census), as well as 
population forecasts (maximum value = 
2499).  

Population Numeric 
(double) 

Yes Population estimate. Note that the 
estimate is not restricted to integers.  

Race Text Yes References a defined race in the associated 
Population Configuration. 
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Variable Type Required Notes 
Ethnicity Text Yes References a defined ethnicity in the 

associated Population Configuration. If no 
ethnicity is specified in the data, “ALL” 
should be listed throughout the entire 
column. 

Gender Text Yes References a defined gender in the 
associated Population Configuration.  

4.1.6 Health Impact Functions  

Health impact functions calculate the 
change in the number of adverse health 
effects among a certain population 
associated with a change in exposure to 
air pollution. A typical health impact 
function has inputs specifying the 
pollutant; the metric (daily, seasonal, 
and/or annual); the age, race, ethnicity, 
and gender of the population affected; 
and the incidence rate of the adverse 
health effect.  

Health impact functions are subdivided 
by user-specified types of adverse 
health effects. The broadest category is 
the Endpoint Group, which represents 
a broad class of adverse health effects, 
such as premature mortality, 
cardiovascular-related hospital admissions, and respiratory- related hospital 
admissions, among other categories. (BenMAP-CE only allows pooling of adverse health 
effects to occur within a given endpoint group, as it generally does not make sense to 
sum or average together the number of cases of disparate health effects, such as 
premature mortality and chronic bronchitis.) The Endpoint Group may then be 

subdivided by user-specified Endpoints. 
For example, the respiratory-related 
hospital admission Endpoint Group, may 
have separate Endpoints for asthma-
related hospital admissions and chronic 
bronchitis-related hospital admissions.  

There are a wide range of variables that can 
be included in a health impact function, to 
specify the parameters of the function and 
to identify its source, such as the Author, 
Year, and Location of the study, as well as 

Fundamental Concept: Health Impact Function or 
Concentration-Response Function 
 
A health impact function calculates the change in the 
number of adverse health effects associated with a 
change in exposure to air pollution. The inputs to a health 
impact function include the change in air quality 
concentration for a pollutant (using a specified metric 
such as annual D24HourMean); the size of the affected 
population (of specified age, race and ethnicity); the 
baseline incidence rate of the adverse health effect; and 
an effect coefficient derived from epidemiological studies. 
 
The coefficient for the health impact function is known as 
Beta (ß) and is derived from epidemiological studies. The 
value of ß typically represents the percent change in a 
given adverse health impact per unit of pollution. 
 
Health impact functions are derived from concentration-
response (C-R) functions, which estimate the 
relationship between the likelihood of adverse health 
effects as a function of concentration of an air pollutant. 
The terms C-R function and health impact function are 
often used interchangeably. 
 
 

Fundamental Concept – Endpoint Group 
 
An endpoint group represents a broad class of 
similar or related adverse health effects, such as 
premature mortality or cardiovascular hospital 
admissions. An endpoint is an individual adverse 
health outcome or subclass of diagnoses within an 
endpoint group, identified by one or more codes in 
the International Classification of Disease system. 
For example, within the endpoint group Mortality, 
there might be the endpoints Mortality, Long Term, 
Lung Cancer and Mortality, Long Term, 
Cardiopulmonary to distinguish annual mortality 
impacts with different causes of death.  
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other Pollutants used in the study. The bibliographic Reference for the study may be 
included, as well as any additional information needed to identify a particular impact 
function. (The Reference variables are useful for this.) A number of health impact 
functions have been developed based on epidemiological studies in the United States 
and Europe. However, researchers have conducted an increasing number of 
epidemiological studies in Asia and Latin America that can be used to develop more 
location-specific impact functions. There are a number of issues that arise when 
deriving and choosing between health impact functions that go well beyond this user 
manual. Hence, it is important to have a trained health researcher assist in developing the 
impact function data file. 18 

4.1.6.1 Add Health Impact Functions 

To add health impact functions to BenMAP-CE, click on the Manage button below the 
Health Impact Functions box in the Modify Datasets window. The Manage Health 
Impact Functions Datasets window will appear.  

 

 
18 U.S. EPA-default configuration and pooling setup files for ozone and PM2.5 health impact assessments are 
available on the BenMAP-CE website.  See:  http://www.epa.gov/benmap/benmap-community-edition. 

http://www.epa.gov/benmap/benmap-community-edition
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In this window you may Add, Edit, and Delete datasets. The section on the left under 
Available Datasets lists the health impact function datasets that are currently in the 
setup database. (See Appendices E, F, and G for more information about the pre-loaded 
health impact functions.) The section on the right under the Health Impact Functions 
in Dataset lets you view the functions in a selected dataset.  

To add a new dataset, click the Add button. The Health Impact Function Dataset 
Definition window will appear. Type the name that you want to use for the dataset in 
the Health Impact Function Dataset Name box.  

You may then enter functions into this dataset through an externally created database 
by clicking the Load From File button. Alternatively, you may Add, Delete, and Edit 
individual functions within BenMAP-CE.  

To add a database, click the Load From File button. In the Load Health Impact 
Dataset window, click the Browse button and then find and select the health impact 
function database that you want to load into your setup. Click Open.  If validation is 
required, then you will have to click the Validation button before the file can be 
imported.  BenMAP-CE’s validation tool will review the file format (column names, 
required columns, and data types) and provide a report with any errors or warnings. 
You can also add metadata (references and descriptions) to the file that is about to be 
imported by clicking the View Metadata button.  Click the OK button on the Load 
Health Impact Dataset window to load the dataset. 

The Health Impact Function Dataset Definition window will reappear, and you can 
then view the health impact functions that you have loaded into your dataset.  
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By clicking and holding the cursor on a column header, you may move it to provide the 
most useful display. For example, by clicking and holding on the Pollutant column 
header and then dragging it to the far left of the window, you can sort all of the health 
impact functions by Pollutant. (Note rearranging the columns is only for display and 
has no effect on the underlying health impact functions in the database.)  

Clicking OK brings you back to the Manage Health Impact Function Datasets 
window. The new dataset you just loaded will be displayed in the list of Available 
Datasets and the associated functions will be displayed in the Health Impact 
Functions In Dataset grid to the right. If you have more than one dataset, you can 
select the dataset by clicking on it.  
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To edit an existing function, first click to select the dataset in the list of Available 
Datasets.  Next, select a particular function in the data grid under Health Impact 
Functions in Dataset.  Then, click the Edit button. The Health Impact Function 
Dataset Definition window appears, and you may change any of the values in the 
boxes and the drop-down lists. When you are finished, click OK.  
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From the Health Impact Function Dataset Definition window you can also add health 
impact functions to the ones that are already in your dataset. Click the Add button and a 
blank Health Impact Function Definition window will appear and you can then create 
new health impact functions. (See Appendix M: Function Editor for additional 
information about the syntax for developing functions with this editor.) 

Starting in Version 1.4, you can link a health impact function to a specific geographic 
area for which you have uploaded a grid definition by selecting that area in the Apply 
Function To dropdown menu. This prevents you from applying the function to other 
grid definitions but may be appropriate for functions derived using sub-national data.  
By default this menu is set to “Entire Area”, which means the application of the health 
impact function is unrestricted. Note that if an air quality cell intersects multiple 
geographic areas, BenMAP-CE will calculate health impacts for the geographic area 
containing the majority of the air quality cell. 

After defining the new health impact function, click OK. This will take you back to the 
Health Impact Function Dataset Definition window. When you are finished with any 
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editing or adding of health impact functions, click OK.  From the Manage Health 
Impact Function Datasets window, you can also select an Available Dataset and Data 
row and view the Metadata.  To view the Metadata associated with the data file, click 
the View Metadata button to view and edit existing references and descriptions.  Click 
OK on the Manage Health Impact Function Datasets window when you are satisfied 
with all your inputs.  The Modify Datasets window will appear. Here in the Health 
Impact Functions box you should see an entry for any health impact function datasets 
that you have loaded.  

4.1.6.2  Format for Health Impact Functions  

Table 4-9 presents the variables that can be used in health impact function datasets.  

Table 4-9. Health Impact Function Dataset Variables  

Variable Type Required Notes 
Endpoint 
Group 

Text Yes If this does not reference an already defined 
Endpoint Group, one will be added. 

Endpoint Text Yes If this does not reference an already defined 
Endpoint for the Endpoint Group, one will be 
added. 

Pollutant Text Yes Should reference an already defined Pollutant.  
Metric Text Yes Should reference an already defined Metric for 

the Pollutant.  
Annual 
Statistic 

Text  No Should either be blank (signifying no annual 
metric value) or be one of: None, Mean, Median, 
Min, Max, Sum.  

Seasonal 
Metric 

Text No Should either be blank (signifying no Seasonal 
Metric value) or reference an already defined 
Seasonal Metric for the Metric.  

Race  No Should either be blank (signifying All Races) or 
reference a defined Race.  

Ethnicity  No Should either be blank (signifying All 
Ethnicities) or reference a defined Ethnicity.  

Gender  No Should either be blank (signifying All Genders) 
or reference a defined Gender. 

Start Age Integer Yes Specifies the low and high ages, inclusive. For 
example, Start Age of ‘0’ and End Age of ‘1’ 
includes infants through the first 12 months of 
life and all one-year old infants. 

End Age Integer Yes 

Author Text No The author(s) of the study from which the 
function is derived.  

Apply 
Function To 

 No The specific geographic area to which you 
would like to apply the health impact function; 
unrestricted by default (“Entire Area”)  
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Variable Type Required Notes 
Year of 
Publication 

Integer Yes The year of publication of the study.  

Qualifier Text No Provides additional information to identify a 
particular health impact function, such as when 
a particular study has multiple functions. 

Location 
Name 

 No Type of study area.  For the ‘United States’ 
setup, choose between ‘State’, ‘County’, and 
‘MSA (metropolitan area)’. 

Location Text No The specific location of the study.  
Co-Pollutants 
Specified in 
Regression 
Model 

Text No Identifies other pollutants that were included 
simultaneously in the estimation equation for 
the pollutant of interest.  

Reference Text No Bibliographic reference, included to identify the 
source in the health literature. 

Function Text Yes The functional form, interpreted (executed) by 
BenMAP-CE when running an analysis to 
estimate air pollution-related health impacts. 
For example, the log-linear form is as follows:  
‘(1-(1/ EXP(Beta*DELTAQ)))*Incidence*POP’. 

Baseline 
Incidence 
Function 

Text  Yes The functional form, interpreted (executed) by 
BenMAP-CE to estimate health impacts due to 
all causes. This typically has the form: 
‘Incidence*POP’. 

Beta 
Distribution  

Text No If the Beta has no distribution, any value is 
acceptable. Otherwise, should be one of: Normal, 
Triangular, Poisson, Binomial, LogNormal, 
Uniform, Exponential, Geometric, Weibull, Gamma, 
Logistic, Beta, Pareto, Cauchy, Custom. 

Beta Numeric 
(double) 

No Mean value of the Beta distribution.  

Beta 
Parameter 1  

Numeric 
(double) 

No Parameter 1 of the Beta distribution (meaning 
depends on the distribution - for Normal 
distributions this represents the standard 
deviation).  

Beta 
Parameter 2  

Numeric 
(double 

No Parameter 2 of the Beta distribution (meaning 
depends on the distribution - for Normal 
distributions this is not required).  

Name A Text No Description of variable A.  
A Numeric 

(double) 
No A constant value which can be referenced by the 

Function. 
Name B Text No Description of variable B.  
B Numeric 

(double) 
No A constant value which can be referenced by the 

Function.  
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Variable Type Required Notes 
Name C Text No Description of variable C.  
C Numeric 

(double)  
No A constant value which can be referenced by the 

Function.  
Incidence 
Dataset 

Text No Specifies the dataset from which incidence data 
will be derived. The user may choose from 
multiple datasets. (Initially this field may be left 
blank.)  See Section 4.1.4. 

Prevalence 
Dataset 

Text No Specifies the dataset from which prevalence data 
will be derived. The user may choose from 
multiple datasets. (Initially this field may be left 
blank.) See Section 4.1.4. 

Variable 
Dataset 

Text No Specifies the dataset from which "variable" data 
(e.g., income data) will be derived. The user may 
choose from multiple datasets. (Initially this field 
may be left blank.)  See Section 4.1.7. 

 

While the mean value of the Beta distribution is always available in BenMAP-CE, the 
values associated with Beta Parameter 1 and Beta Parameter 2 may change depending 
on the type of distribution.  Table 4-10 provides a list of the variables associated with 
each type of beta distribution in BenMAP-CE. 

Table 4-10. Beta Distribution Types and Variables  

Distribution Formula Beta 
Parameter 1 

Beta 
Parameter 2 Notes 

Normal 
1

𝜎𝜎√2𝜋𝜋
× 𝑒𝑒− (𝑥𝑥−𝜇𝜇)2

2𝜎𝜎2  
Standard 
deviation 
(sigma) 

N/A 
The Normal distribution has two 
parameters - the mean, mu, and 
the standard deviation, sigma. 

Triangular 

2(x − a)
(b − a)(c − a) 

 
for a ≤ x ≤ c 

 
2(b − x)

(b − a)(b − c)  

 
for c ≤ x ≤ b  

Minimum 
value (a) 

Maximum 
value (b) 

The Triangular distribution has 
three parameters - the minimum 
value (a), the maximum value 
(b), and the most likely value (c). 
BenMAP-CE uses the mean value, 
the minimum, and the maximum 
to calculation the most likely 
value. 

Poisson 
 

Lambda N/A The Poisson distribution has a 
single parameter, lambda. 

Binomial 
 

n p The Binomial distribution has 
two parameters, n and p. 

LogNormal 
 

Standard 
deviation 

(sigma) of the 
corresponding 

N/A 

The LogNormal distribution has 
two parameters - the mean of the 
corresponding Normal 
distribution, mu, and the 
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Distribution Formula Beta 
Parameter 1 

Beta 
Parameter 2 Notes 

Normal 
distribution 

standard deviation of the 
corresponding Normal 
distribution, sigma. 

Uniform 
 

A B 

The Uniform distribution has two 
parameters, A and B, which 
define the interval on which the 
distribution is defined. 

Exponential 
 

Mu N/A The Exponential distribution has 
one parameter, mu. 

Geometric 
 

p N/A The Geometric distribution has 
one parameter, p. 

Weibull 
 

alpha beta The Weibull distribution has two 
parameters, alpha and beta. 

Gamma 
 

a b The Gamma distribution has two 
parameters, a and b. 

Logistic 
 

m b The Logistic distribution has two 
parameters, m and b. 

Beta 
 

a b The Beta distribution has two 
parameters, a and b. 

Pareto 
 

a b The Pareto distribution has two 
parameters, a and b. 

Cauchy 
 

b m The Cauchy distribution has two 
parameters, b and m. 

Custom N/A Standard 
deviation N/A 

The custom distribution is used 
for specified expert distributions 
for pollutant effect (e.g., 
truncated parametric 
distributions or non-parametric 
distributions). 

 

For the Function definition, commonly used mathematical operators (+, -, *, /) may be 
used.  Other available “Operators” are listed to the right of the commonly used 
functional forms (e.g., ABS(x), EXP(x), LOG(x)).  These operators are supported by the 
math and statistics library used within BenMAP-CE. 

Under the heading “Available Variables”, are temporary runtime variables which can 
be used in the health impact function definition.  The values for these variables (except 
for the A, B, C constants) are expected to change as the code loops over grid cells and 
stratified population groups.  Table 4-11 presents the available runtime variables that 
can be used in health impact function definition.  
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Table 4-11. Health Impact Function Available Runtime Variables  

Variable Type Notes 
Beta Numeric  Beta coefficient 
DELTAQ Numeric  Change in pollutant concentration (baseline – 

control) 
POP Numeric  Population 
Incidence Numeric  Number of people with new (or newly 

diagnosed) adverse health effects within a given 
period of time. 

Prevalence Numeric  Number of people who already have a given 
adverse health condition (i.e., chronic illness). 

Q0 Numeric  Control pollutant concentration 
Q1 Numeric  Baseline pollutant concentration 
A Numeric  User-defined constant 
B Numeric  User-defined constant 
C Numeric  User-defined constant 

 

The “Population Variables (optional)” box provides a list of setup variables which 
have been defined under the Variable Datasets (see Section 4.1.7). 

4.1.7  Variable Data  

Health Impact Functions and Valuation Functions may sometimes refer to 
socioeconomic variables for which BenMAP-CE does not automatically calculate values. 

For example, some valuation functions 
reference the median income within each 
area of analysis. Other functions apply to 
populations living below the poverty line in 
a given country. To facilitate this type of 
analysis, BenMAP-CE allows you to load 
datasets of socioeconomic Variables, which 
apply either globally or to a specific 
geographic area (i.e., they are associated 
with a Grid Definition). 

4.1.7.1 Add Variable Data 

To add Dataset Variables to BenMAP-CE 
(such as income and other miscellaneous 

variables that might be needed in the analysis), click on the Manage button below the 
Variables Datasets box in the Modify Datasets window. The Manage Setup Variable 
Datasets window will appear.  

Fundamental Concept – Variable Data 
 
A Variable Data dataset contains 
sociodemographic and economic data not 
contained elsewhere that may be needed for 
certain health impact or valuation functions, or for 
certain types of analysis such as environmental 
justice studies. Examples of socioeconomic 
variables that might be included in Variable Data 
include median household income and percentage 
of population living below the poverty line.   
 
Variables included in the dataset must be 
associated with a particular Grid Definition). 
Data at different spatial scales (e.g., county versus 
state) need to be input separately using different 
Variable Data files, each associated with the 
relevant grid definition. 
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In this window you may Add, Edit, and Delete datasets. The section on the left under 
Available Datasets lists the variables datasets that are currently in the setup database. 
The section on the right under the Dataset Variables lets you view the variables in a 
selected dataset.  

To add a Variable dataset click the Add button. This will take you to the Setup 
Variable Dataset Definition window. In this window you may add externally created 
variables through the Load From File button for any of your predefined Grid 
Definitions.  
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To start, type the name that you want to use for the Variable Dataset in the Dataset 
Name box. (This is a name that is internal to BenMAP-CE and used just for 
identification.)  

To add an externally created Variable Dataset, click the Load From File button. This 
will bring up the Load Variable Database window. Here you need to choose the grid 
definition from the Grid Definition drop-down list that matches the level of 
aggregation in your variable data file. Remember that the Variable Dataset you import 
must use the same column/row index as the Grid Definition. Next, you may use the 
Browse button to find and select the desired Database (i.e., input file) and click Open.  
You can click the Validate button to ensure the file is properly formatted before 
importing.  BenMAP-CE’s validation tool will review the file format (column names, 
required columns, and data types) and provide a report with any errors or warnings. 
You can also add metadata to the imported data (reference and description of the data 
file) by clicking the View Metadata button. 
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After choosing (and validating) the input file, click OK. This takes you back to the Setup 
Variable Datasets Definition window. This window displays the variables in the 
dataset and their values.  

 
 

When finished adding variables, click OK. This will take you to the Manage Setup 
Variable Datasets window.  

In the Available Datasets list box there is an entry for the dataset that you just added. 
And in the Dataset Variables list box are the variables in the highlighted dataset.  
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At this point you may click Add to load an additional dataset, click Edit to edit the 
selected dataset, click Delete to delete the selected dataset, or complete this variable 
management step by clicking OK.  

Clicking OK returns you to the Modify Datasets window, where the entry for the 
variable dataset that you just entered should be visible under the Variable Datasets 
box.  

4.1.7.2  Format for Variable Data  

Table 4-12a presents the variables that can be used in variable datasets, and Table 4-
12b presents a sample of what a dataset might look like. Note that if you are loading 
your own variable data, you can choose your own variable names (July 2018: this 
feature is currently disabled. Users should currently specify one variable per file). 

Table 4-12a. Variable Dataset Variables 

Variable Type Required Notes 
Column Integer Yes The column and the row link the 

population data with cells in a Grid 
Definition. 

Row Integer Yes 

Median_Income Numeric 
(double) 

Yes Example:  Median income value. 

<Variable 
Name> 

Numeric 
(double) 

No Additional variables may be specified. 
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Table 4-12b. Sample Variable Dataset  
Column Row Median_Income 

42 17 39871.19 
42 29 43760.31 
42 45 38186.77 
42 91 42298.49 
42 101 31261.07 

 
4.1.8 Inflation Data  

It may be desirable for the economic 
values generated by Valuation 
Functions to account for inflation and 
generate economic benefits using 
currency for years other than the year 
initially specified by your valuation 
data. To do this, you can load Inflation 
Datasets into BenMAP-CE, and then 
include a reference to your inflation 
data when developing valuation 
functions. (We give an example of this 
below.)  

The Valuation Functions should have a consistent currency year, and this currency 
year has to be kept in mind when developing the inflation datasets. That is, whichever 
currency year is used for your valuation functions, then the inflation values for that year 
should be set to 1. For example, in the United States setup, the valuation functions have 
a dollar year of 2015, so the inflation datasets have a value of 1 for the year 2015. 
(Values for years earlier than 2015 are less than 1, and values for years after 2015 are 
greater than 1, because inflation has increased from one year to the next.) The United 
States setup in BenMAP-CE provides inflation factors for three different types of values:  

 All Goods Index can be used to adjust the value of generic goods.  

 Medical Cost Index can be used to adjust the value of medical expenses. 

 Wage Index can be used to adjust the value of wages.  

If a Valuation Function includes an estimate of wage income, for example, this value 
could be multiplied by the Wage Index adjustment factor to get the specified currency 
year. For example, in valuing work loss days, the United States setup uses a function like 
the following: DailyWage*WageIndex, where the DailyWage is specified in year 2015 
dollars. In the Inflation Dataset, the WageIndex scales this DailyWage value up or 
down depending on the currency Year you have chosen. If the currency Year is 2015, 
then the WageIndex has a value of 1 and no change is made to the DailyWage. If the 

Fundamental Concept – Inflation Dataset 
 
Inflation Datasets allow BenMAP-CE to account for 
changes in prices over time when presenting valuation 
estimates for health benefits.  This dataset allows the 
user to specify valuation results in a currency year 
different from that reported in the valuation function 
applied. For example, you might use valuation data 
specified in 2015 dollars yet want to report the 
BenMAP-CE valuation estimate in 2020 dollars to 
compare to a cost analysis reporting costs in 2020 
dollars. The inflation indices in this table are used to 
automatically convert currency to the dollar year the 
user selects when performing an analysis.  
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currency Year is specified to, say, 2020, then the WageIndex will have a value greater 
than 1 because of the inflation that has occurred between 2015 and 2020.  

4.1.8.1. Add Inflation Data 

To add inflation data to BenMAP-CE, click on the Manage button below the Inflation 
Datasets box in the Modify Datasets window. The Manage Inflation Datasets 
window will appear. In this window you may Add, Edit, and Delete datasets. The 
section on the left under Available Datasets lists the Inflation Datasets that are 
currently in the setup database. The section on the right under Inflation Detail 
presents the inflation factors in a selected dataset.  

Click on the Add button. In the Load Inflation Dataset window, type in the name of the 
dataset in the Inflation Dataset Name box, and then click on the Browse button to the 
right of the Database box to choose the dataset that you want to import and click Open.  
You can click the Validate button to ensure the file is properly formatted before 
importing.  BenMAP-CE’s validation tool will review the file format (column names, 
required columns, and data types) and provide a report with any errors or warnings.  In 
addition, you can add metadata to the file, to include references and descriptions, by 
clicking the View Metadata button.  Click OK. The Manage Inflation Datasets window 
will appear. Here you may view the data that you just loaded.  
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At this point you may add more data by clicking Add, or you may view and edit the 
Metadata for a specific dataset.  This is done by selecting an Available Dataset and an 
entry in the Inflation Detail box and then clicking the View Metadata button.  If you 
are satisfied with all import data, you can complete this step by clicking OK. Clicking OK 
takes you to the Modify Datasets window, where you should see an entry for the 
inflation dataset that you just loaded under the Inflation Datasets box.  

4.1.8.2  Format for Inflation Data  

Table 4-13a presents the variables that can be used in Inflation Datasets, and Table 
4-13b presents a sample of what a dataset might look like. Note that if you are loading 
your own inflation data, you can use different names than the ones specified below. 
Instead of specifying ‘AllGoodsIndex’ you could have a variable called ‘General Index’ — 
this is fine as long as you make sure that your valuation functions properly reference 
these inflation variables.  
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Table 4-13a. Inflation Dataset Variables in U.S. Setup  

Variable Type Required Notes 
Year Integer Yes The year of the data. Note that this will 

typically only include historical estimates. 
AllGoodsIndex Integer No Example:  All goods inflation index value. 
MedicalCostIndex Integer No Example:  Medical cost inflation index 

value. 
WageIndex Integer No Example:  Wage inflation index value. 
<Variable Name> Integer No Additional indices can be specified. 

 

Table 4-13b. Sample Inflation Dataset  
YEAR AllGoodsIndex MedicalCostIndex WageIndex 
2005 0.75 0.62 0.71 
2006 0.79 0.67 0.74 
2007 0.81 0.72 0.76 
2008 0.83 0.77 0.78 
2009 0.86 0.8 0.81 
2010 0.88 0.84 0.83 
2011 0.91 0.87 0.86 
2012 0.93 0.89 0.89 
2013 0.94 0.92 0.92 
2014 0.96 0.96 0.96 
2015 1 1 1 
2016 1.02 1.04 1.03 
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4.1.9 Valuation Data  

BenMAP-CE allows the valuation 
estimates to vary by Endpoint 
Group, Endpoint, and Age (note 
that multiple estimates may be 
provided for a particular 
combination). BenMAP-CE allows 
the valuation function to be quite 
detailed, and allows an uncertain 
parameter (A) with a user-
specified distribution. You can 
modify the valuation function 
with a number of constant values 
(B, C, and D) that might represent 
an adjustment for inflation, 
income growth, income elasticity, 
or, say, purchasing power parity. 
Finally, BenMAP-CE has two 
fields to more clearly identify the 
valuation function (i.e., Qualifier 
and Reference).  

When reviewing the economic 
literature to develop a valuation database or to simply add valuation functions to an 
existing database, it is important to have an economist assist. For an overview of 
valuation, see the Overview of Valuation section in Chapter 7: Aggregating, Pooling, and 
Valuing.  

4.1.9.1 Add Valuation Data 

To add valuation functions to BenMAP-CE, click 
on the Manage button below the Valuation 
Datasets box in the Modify Datasets window. 
The Manage Valuation Function Datasets 
window will appear. 

 

Fundamental Concept – Valuation 
 
Valuation Functions are used by BenMAP-CE to estimate the 
economic values of changes in the incidence of health effects. In 
the context of human health benefits assessment, these 
functions help express society's preferences for avoiding 
certain health effects as an economic value (e.g., in U.S. dollars).  
 
For morbidity endpoints, BenMAP-CE estimates monetized 
benefits by using either Willingness to Pay (WTP) or Cost of 
Illness (COI)-based valuation functions. WTP reflects the 
willingness of individuals to exchange money for a reduction in 
his or her risk of illness or death and is viewed by economists 
as the most complete and appropriate measure of the value of a 
risk reduction. COI estimates the value of a health effect based 
on the observed direct and indirect costs associated with that 
condition. Direct costs would include medical costs such as 
hospital stays and pharmaceutical costs, while indirect costs 
include impacts such as lost earnings from days unable to 
work.  A COI-based estimate is expected to understate the true 
economic value of reductions in risk of a health effect because 
it does not include the value of avoided pain and suffering.  
 
For mortality endpoints, BenMAP-CE generally estimates 
monetized benefits by using the Value of Statistical Life 
(VSL), a WTP-based estimate derived from an extensive 
literature of observed or elicited estimates of the monetary 
value that an individual is willing to exchange for small 
reductions in his or her risk of death. It does NOT represent the 
value of the life of any one specified individual.  
 
 
 
 

Warning 
 
In order to use a valuation function with a 
particular health incidence result, the 
Endpoint Group of the valuation function 
must match the Endpoint Group of the 
health incidence result exactly. 
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In this window you may Add, Edit, and Delete datasets. The section on the left under 
Available Datasets lists the valuation datasets that are currently in the setup database. 
The section on the right under the Valuation Function In Dataset lets you view the 
valuation factors in a selected dataset. 

If the dataset is large, there are filters available to view a subset of the list by selecting a 
value from the Filter Endpoint Group and/or Filter Endpoint drop-down lists. Or, you 
can type a value in the Filter box to search for a particular word or phrase.  You can 
also group data by Endpoint Group by selecting the Group option. 

To add a dataset, click on Add. This will display the Valuation Function Dataset 
Definition window.    
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You may load valuation data with an externally-created data file, or you may add 
individual valuation functions from within BenMAP-CE. To import valuation functions, 
click on the Load From File button. This will bring you to the Load Valuation 
Function Dataset window.  

 

In the Load Valuation Function Dataset window provide a name for the valuation 
function dataset.  Use the Browse button to choose the valuation database and click 
Open. Once again, you can click the Validate button before the file is imported.  In 
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addition, you can create metadata, which includes references and descriptions of the 
file, by clicking on the View Metadata button.  Click OK on the Load Valuation 
Function Dataset window.  This will bring you back to the Valuation Function 
Dataset Definition window. Here you can view the valuation functions that you have in 
your database.  

The columns within each of the list boxes can be rearranged in order to provide the 
most useful display. (Note that rearranging the columns is only for display and has no 
effect on the underlying Valuation Function dataset.)  You can also change how you 
view the list by specifying a text string to Filter the records (e.g., Asthma), or create 
groupings of records by their Endpoint Group (click the Group option box). 

 
In the Valuation Function Dataset Definition window, you can also edit the functions 
already existing in your dataset by highlighting a particular Valuation Function and 
then clicking the Edit button.  

If the dataset is large, there are filters available to view a subset of the list by selecting a 
value from the Filter Endpoint Group and/or Filter Endpoint drop-down lists. When 
you are finished, click OK.  



  Chapter 4 – Loading Data 

BenMAP-CE User’s Manual March 2023 
4-66 

 
From the Valuation Function Dataset Definition window you can also manually 
define a new Valuation Function. Click the Add button to open the Valuation 
Function Definition window where you can then create a new Valuation Function. 
(See Appendix M: Function Editor for additional information about the syntax for 
developing functions with this editor.) 

After defining the new Valuation Function, click OK. This will take you back to the 
Valuation Function Dataset Definition window. When you are finished, click OK.  

This will return you to the Manage Valuation Function Datasets window.  From this 
form you can Add, Delete, or Edit the available datasets.  In addition, you can view or 
edit the previously created metadata for a file by selecting an Available Dataset and 
Valuation Function and then click the View Metadata button.  When you are satisfied 
with the inputs, click OK.  The Modify Datasets window will appear. Here in the 
Valuation Function datasets box you should see any updates to the Valuation 
Function dataset that you just made.  
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4.1.9.2  Format for Valuation Data  

Table 4-14 presents the variables that can be used in Valuation Datasets.  

Table 4-14. Valuation Dataset Variables 

Field Name Type Required Notes 
Endpoint Group Text Yes If this doesn't reference an already-defined Endpoint 

Group, one will be added. 
Endpoint Text Yes If this doesn't reference an already-defined Endpoint for 

the Endpoint Group, one will be added. 
Qualifier Text No Provides additional information to identify a particular 

valuation function. 
Reference Text No Bibliographic reference, included to identify the source 

in the economic literature. 
Start Age Integer No Specifies the low and high ages, inclusive.  For example, 

Start Age of ‘0’ and End Age of ‘1’ includes infants 
through the first 12 months of life and all one-year old 
infants. 

End Age Integer No 

Point Estimate Numeric 
(double) 

Yes Central estimate of the unit value. 

Function Text Yes The functional form, interpreted (executed) by BenMAP-
CE when running an analysis. 

A Description Text No Description of variable A. 
A Numeric 

(double) 
No Mean of the A distribution. 

A Distribution Text No If A has no distribution, any value is 
acceptable.  Otherwise, should be one of:  Normal, 
Triangular, Poisson, Binomial, LogNormal, Uniform, 
Exponential, Geometric, Weibull, Gamma, Logistic, Beta, 
Pareto, Cauchy, Custom.  

A Parameter 1 Numeric 
(double) 

No Parameter 1 of the A distribution (meaning depends on 
the distribution - for Normal distributions this 
represents the standard deviation). 

A Parameter 2 Numeric 
(double) 

No Parameter 2 of the A distribution (meaning depends on 
the distribution - for Normal distributions this is not 
required). 

Constant 
Description 

Text No Description of variables, B, C, and D. 

Constant Value Numeric 
(double) 

No A constant value (denoted by B, C, and/or D) which can 
be referenced by the Function. 
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4.1.10  Income Growth Data  

According to economic theory, willingness-
to-pay (WTP) to avoid air-pollution related 
morbidity effects and premature mortality 
should grow as real income increases. 
BenMAP-CE allows users to adjust the WTP 
estimates to account for the growth in 
income over time. This adjustment is a 
combination of data on income growth and 
estimated income elasticity of demand, which 
measures the responsiveness of the quantity 
demanded of a good to the change in the income of the people demanding the good; this 
is distinct from elasticity of demand, which quantifies the change in demand for goods 
and services as a result of changes in price for those goods and services. This section 
describes how to load the data adjusting for income growth and how EPA developed 
these adjustment factors.  

Note that the WTP estimates in the default valuation functions in the United States setup 
are assumed to be based on 1990 income, so the income growth adjustments are all 
relative to 1990. That is, the income growth data has a value of 1 in 1990, and because 
income has generally increased over time in the U.S., the income growth values are 
typically greater than 1 after 1990. (An exception is 1991, when incomes declined 
slightly in the U.S.)  

If you load in your own valuation functions and/or income growth adjustment factors, 
be sure that you have carefully considered the income year. For example, if your 
valuation functions are based on income in the year 2005, then the income growth 
adjustment should have a value of 1.0 in 2005, because no adjustment is necessary. As 
you forecast into the future, under the assumption that incomes go up over time, then 
your income growth adjustment factors would have values greater than 1.0 for years 
past 2005, and would have values less than 1.0 for years prior to 2005.  

4.1.10.1 Add Income Growth Data 

To add income growth data to BenMAP-CE, click on the Manage button below the 
Income Growth Adjustments box in the Modify Datasets window. The Income 
Growth Adjustment Dataset Manager window will appear.  

Fundamental Concept – Income Growth 
Adjustment 
 
Income Growth Adjustment is the 
adjustment of the output of certain valuation 
functions to reflect the impact of increases in 
real income over time on WTP values. 
Generally, an increase in real income is 
expected to result in an increase in the 
willingness to pay (WTP). Users may select 
alternative values for the sensitivity of WTP to 
these changes. 
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In this window you may Add and Delete datasets. The section on the left under 
Available Datasets lists the Income Growth Adjustments Datasets that are currently 
in the setup database. The section on the right under Income Growth Detail presents 
the income growth adjustment factors in a selected dataset.  

Click on the Add button. In the Load Income Growth Adjustment Factors Dataset 
window, type in the name of the dataset in the Income Growth Adjustment Dataset 
Name box, and then click on the Browse button to the right of the Database box to 
choose the dataset that you want to import and click Open.  To confirm the file has 
proper formatting, click the Validation button before importing the file.  In addition, 
you can edit the metadata for the imported file, to include references and descriptions, 
by clicking the View Metadata button. 

Click OK. The Income Growth Adjustment Dataset Manager window will appear. 
Here you may view the data that you just loaded. From this window, you can also view 
or edit metadata by selecting an Available Dataset and Income Growth Detail and 
then clicking the View Metadata button. 
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4.1.10.2  Format for Income Growth Adjustment Data  

Table 4-15a presents the variables that can be used in Income Growth Adjustment 
Datasets and Table 4-15b presents a sample of what a dataset might look like. 

Table 4-15a. Income Growth Adjustment Dataset Variables 

Variable Type Required Notes 
Year Integer Yes The year of the data.  Note that this will 

include historical estimates as well as 
forecasts. 

Mean Numeric 
(double) 

Yes Mean income growth adjustment factor. 

EndPointGroup Text Yes Endpoint group (e.g., Chronic Asthma). 
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Table 4-15b. Sample Income Growth Adjustment Dataset 

 

4.2 Export and Import Setups  

BenMAP-CE allows you to export and import entire databases (all Available Setups), 
individual setups (e.g., United States, China), and parts of individual setups (e.g. all Grid 
Definitions, or individual Health Impact Function datasets). This functionality can be 
used to archive data, share data with other BenMAP-CE users, as well as to allow you to 
move databases between computers or between versions of BenMAP (currently only 
supported for versions 1.3 and 1.4). In particular, all of the steps involved in creating a 
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setup can be done just once, after which the 
data can be exported and then imported on 
other computers.  See Chapter 9: Tools Menu 
for more information about the Database 
Export and Database Import tools. 

4.3  Frequently Asked Questions 

I've loaded new baseline incidence rates, but BenMAP-CE won't let me select it in the 
configuration stage.  

When formatting these data for importing to BenMAP-CE, take special care to ensure 
that you have specified the health endpoints correctly. The baseline incidence rate must 
be associated with a specific health endpoint and endpoint group in BenMAP-CE. Be 
sure that you have recorded the endpoint group and endpoint exactly as it is recorded 
in BenMAP-CE. For example, if the baseline incidence rate is for asthma-related hospital 
admissions, be sure you have recorded the endpoint group as ‘Hospital Admissions, 
Respiratory’ and the endpoint as ‘HA, Asthma’. 

I've loaded a new grid and new population data into BenMAP-CE but I can't seem to use 
these new data. 

Be sure to load the new grid definition first. Next, load the population dataset and be 
sure to select your new grid definition.  

How do I generate a population dataset for a new grid definition?  

You can generate a population dataset using a variety of approaches. The key is that you 
need to have a shapefile of your area of interest (e.g., Census tracts in a city) and you 
need to have census data matching your area of interest. One source for both a shapefile 
and the associated population data is the U.S. Census Bureau. (A variety of other 
agencies have census data, and you need to check around for your area of interest.) 
Another option for U.S. population data is to use the PopGrid software application, 
mentioned in Section 4.1.5 and described in Appendix J on Population Data for the U.S. 
Setup. Using PopGrid, you still need to have a shapefile for your area of interest.  

Can I edit a population configuration?  

No, you cannot edit a population configuration. You can only view a population 
configuration. If the population configuration does not match your data, you need to 
either create a new population configuration to match your data, or reshape your data 
so that it matches the population configuration.  

 

Warning 
 
Please note that your existing Setups will not be 
automatically transferred to newly installed 
versions of BenMAP. If you wish to preserve 
your setups, please see instructions for 
exporting and importing databases in Chapter 9. 
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Chapter 5  
 

Creating Air  
Quality Surfaces 

 
 
 
 
 
 
 
 
 
 

In this chapter… 
 Define air quality grids 
 Create air quality surfaces using different methods. 
 Learn how to structure input files. 
 Learn how to interpolate monitoring data with Closest 

Monitor, Voronoi Neighborhood Averaging, or Fixed Radius. 
 Learn about the Monitor Rollback feature. 
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BenMAP-CE is not an air quality model and it 
cannot simulate changes in air quality. Instead 
it relies on the model-simulated or monitored 
air quality inputs given to it. To estimate 
population exposure to air pollution, BenMAP-
CE uses air quality surfaces that it generates 
from input air quality data (modeling or 
monitoring data). The program uses a grid 
structure, where each cell contains a model or 
monitored air quality value. 

BenMAP-CE creates air quality surfaces to 
estimate the average exposure to ambient air 
pollution of people living in a “grid.” These 
grids are either regularly shaped areas like 
those used by air quality models, or irregular shapes, like provinces, local government 
areas, cities, or nations. BenMAP-CE does not estimate personal exposure. Instead, the 
program calculates average pollutant concentration to which people are exposed in 
each grid cell. BenMAP-CE then uses these average values to calculate health impact 
functions.  

To create air quality surfaces, BenMAP-CE uses a number of inputs, including modeling 
data or monitoring data. You may enter your own modeling and monitoring data, 
provided that the data are in a format recognized by BenMAP-CE.  

 

To start the grid creation process, locate Air Quality Surfaces on the BenMAP-CE tree 
menu.  Under this header, double-click Pollutant.  On the selection window, click to select a 

Fundamental Concept – Air Quality 
Surface 
 
An air quality surface contains modeled or 
monitored air pollution data arranged 
spatially in a series of cells; these cells may 
be a regular shape (like a 12km by 12km 
grid) or an irregular shape (like a county or 
census tract). BenMAP-CE uses one air 
quality surface to represent the Baseline 
scenario and a second surface to represent 
the Control scenario. These baseline and 
control surfaces must use the same air 
quality grid. The program calculates the 
difference between Baseline and Control 
surfaces as an input to the health impact 
functions. Air quality surfaces are stored in 
files with an .aqgx file extension. 

Fundamental Concept – Baseline and Control Scenarios 
 
BenMAP-CE requires both a Baseline Scenario air quality surface and Control Scenario air quality surface to 
estimate the effects of a change in air quality (Delta). Both Baseline and Control air quality surfaces are required 
regardless of whether you use modeling data or monitoring data. 
 
• The Baseline Scenario characterizes the air quality levels observed or expected in the absence of the policy 

change you are evaluating. The baseline is sometimes referred to as “Business as Usual.” The baseline 
scenario is usually considered to be the reference scenario against which to compare a potential scenario 
characterized by the implementation of regulations.  

• The Control Scenario in BenMAP is the scenario in which emissions from one or more source sectors are 
changed (increased or decreased) from the Baseline scenario. The Control scenario usually represents 
expected air quality levels after a new regulation or set of regulations has been implemented.  

 
The air quality Delta is the change in air pollution between the Baseline air quality grid and the Control air 
quality grid (Baseline minus Control). BenMAP-CE uses the air quality Delta as the input to the health impact 
function. 
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pollutant from the left site and click “Add” button to add it to 
the right side. You may also click, hold and drag the pollutant 
of choice from the left side to the right side.  Click OK. 

To remove a selected pollutant, click the Remove button or 
double click the pollutant name to remove it from the left 
site.  

Next, double-click Baseline on the BenMAP-CE tree menu 
to open the Grid Creation Method window.    

BenMAP-CE will then ask which Grid Type (which you 
select from a previously loaded shapefile) to use and which 
of the following types of air quality data you wish to use:  

 Model Data. Choose this option if you have air quality modeling data that you 
wish to use directly. Table 5-1 below describes the input format for modeling 
data.  

 Monitor Data. Choose this option if you wish to use point source monitoring data 
(measured observations).  

 Monitor Rollback. Choose this option if you want to reduce monitor levels by a 
specified amount.  

 Open *.aqgx file.  Choose this option to import a file that has already been 
created. 

 
Select your Grid Type and then click Next. BenMAP-CE will direct you through the 
necessary steps for each option (described below). 
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5.1 Model Data 

After choosing the Model Data option, use the Generic Model Database tab to load 
grid-definition-based modeling data (e.g., CMAQ or CAMx).19 For model files being 
imported from an Excel workbook with multiple tabs, BenMAP-CE will prompt you to 
select the tab containing the data for import.  

 

The Model Database specifies the location of the air quality model results that you 
want to import. Table 5-1 presents the structure that these files must have, and Table 
5-2 presents a sample data file with a variety of metrics. (For more information on air 
quality models, the EPA website has detailed descriptions of a variety of models at 
https://www.epa.gov/scram.)  

Table 5-1.  Air Modeling Data File Variables 

Variable Type Required Notes 
Column Integer Yes The column and the row uniquely identify each set of 

modeling values and link the modeling data with cells in 
a Grid Definition. Row Integer Yes 

Metric Text No This variable is either blank (signifying that the Values 
are Observations, rather than Metric values), or must 
reference an already defined Metric (e.g., 1-hour daily 
maximum) for the appropriate Pollutant. 

 
19 Community Multi-scale Air Quality (CMAQ) Model is available at: 
http://www.epa.gov/amad/Research/RIA/cmaq.html or https://www.cmascenter.org/cmaq/. 
Comprehensive Air Quality Model with Extensions (CAMx) is available at: http://www.camx.com/.  

http://www.epa.gov/amad/Research/RIA/cmaq.html
https://www.cmascenter.org/cmaq/
http://www.camx.com/
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Seasonal 
Metric 

Text No This variable is either blank (signifying that the Values 
are not Seasonal Metric values) or must reference an 
already defined Seasonal Metric for the Metric (e.g., 
mean of the 1-hour maximum values for the months of 
June through August). 

Annual Metric Text No This variable is either blank (signifying that the values are 
not an annual metric) or must be one of:  None, Mean, 
Median, Max, Min, Sum (e.g., mean of the 1-hour 
maximum values for the year) 

Values Comma 
Separated 
Values 
(Text)20 

Yes If Metric is blank, values are supplied as a comma-
delimited string of values for the year [e.g., 365 or 366 
(leap year) values for daily data, 8760 or 8784 (leap year) 
values for hourly data]. If Metric is defined, but Seasonal 
Metric and Annual Metric are blank, 365 or 366 metric 
values. If Seasonal Metric is defined, but Statistic is 
blank, n seasonal metric values. If Annual Metric is 
defined, one annual statistic value for either the Metric (if 
Seasonal Metric is blank) or the Seasonal Metric. Missing 
values are signified with a period (‘.’). 

 

Table 5-2. Sample Air Modeling Data File  

 

 
20 The list of comma-separated values must be surrounded by quotation marks, otherwise only the first value 
in the list will be used. 
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5.2 Monitor Data  

Using the Monitor Data grid creation option, you 
create an air quality grid directly from air pollution 
monitoring data. At the top left of the Monitor Data 
window, you will see the previously selected grid 
definition in the Grid Type field, and the previously 
selected pollutant in the Pollutant field. Below the 
Pollutant field of the Monitor Data window, you are 
asked to select an Interpolation Method. The 
interpolation method is used to move from point-
based monitor data to grid cell-based air quality data. 
That is, some grid cells will have many monitors in 
them, some will have just one, and some will have 
none. BenMAP-CE uses the interpolation methods to 
generate representative air quality metric values for 
each grid cell from monitor data for all of these cases. 

 

BenMAP-CE includes three Interpolation Methods. The Closest Monitor method simply 
uses the monitor closest to a grid cell's center as its representative value. The Voronoi 
Neighborhood Averaging method takes an inverse-distance weighted average of a set of 
the monitors surrounding a grid cell's center as its representative value. The Fixed 
Radius method averages all of the monitors within a fixed (user-specified) radius 
measured from the center of the grid cell. Each method is described below. For more 
detail, also see Appendix B on Air Pollution Exposure Estimation Algorithms.  

On the right side of the Monitor Data window, you can specify a source for your 
monitor data. Using the Library tab, you may select from data that you have already 
loaded into BenMAP-CE.  Choose the Monitor Dataset and Monitor Library Year from 
the drop-down lists.  

Fundamental Concept - 
Interpolation 
 
Interpolation is the process of 
estimating the air quality level in an 
unmonitored area using data from 
one or more nearby air quality 
monitors. BenMAP-CE includes 
three types of interpolation options: 
one assigns the value from the 
closest monitor; a second assigns 
the weighted average of all 
monitors within a user-specified 
fixed radius, and the third applies 
the Voronoi Neighbor Averaging 
method. These interpolation 
methods are discussed in more 
detail below and in Appendix B.  
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If you want to load your own monitor data, 
choose Text File from the Monitor Dataset drop-
down list.  You can then browse to locate the 
data file you want to load.  See Chapter 4 for 
more information about formatting monitor 
datasets. 

At the bottom of the Monitor Data window, 
there is a Map button.  The Map button opens 
the Monitor Map window, allowing you to 
preview the map that you are about to load. 

5.2.1 Closest Monitor for Monitor Data  

If you choose the Closest Monitor option, BenMAP-CE identifies the monitor closest to 
each grid cell's center, and then assigns that monitor's data to the grid cell. Closest 
Monitor interpolation can be modified by clicking on the Advanced button at the 
bottom of the window and typing in a Maximum Neighbor Distance (in km).  

 

The Maximum Neighbor Distance specifies the maximum distance (measured in 
kilometers) that a monitor may be from the center of a grid cell. Cells without any 
monitors within this distance will not be included in the resultant air quality grid. The 
default setting is infinite (i.e., no limit to the monitor’s distance from the center of the 
grid cell).  

Note: The Maximum Relative Neighbor Distance and the Weighting Approach 
options are irrelevant (and are therefore disabled) when using the Closest Monitor 
method, since BenMAP-CE is only choosing a single monitor to assign to any given grid 
cell.  

 

Decision Point – Monitor Data 
 
Monitor data may be stored as part of a 
BenMAP-CE setup or loaded as a text file 
for a particular analysis. If you have 
already loaded your monitor data into a 
setup, choose Library from the Monitor 
Dataset drop-down list and select the 
appropriate monitor data in the Library 
tab. If you want to load your own 
monitor data, choose Text File from the 
Monitor Dataset drop-down list and 
browse to locate the data file you want to 
load.   
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5.2.2 Voronoi Neighborhood Averaging (VNA) for Monitor Data  

If you choose the Voronoi Neighborhood Averaging option, BenMAP-CE first identifies 
the set of monitors that "surround" each grid cell's center (these monitors are referred 
to as the grid cell's neighbors), and then BenMAP-CE calculates an inverse-distance 
weighted average of these neighboring monitors. In this section, we provide some 
examples of the different ways that BenMAP-CE calculates the average of the 
neighboring monitors. See Appendix B on Air Pollution Exposure Estimation Algorithms 
for an expanded discussion of VNA, including how the VNA algorithm actually chooses 
the neighbor monitors, as well as the different ways that it may be used.  

VNA interpolation has three advanced interpolation options, which can be modified by 
clicking on the Advanced button at the bottom of the window:  

 Maximum Neighbor Distance (in km) specifies the maximum distance that a 
monitor may be from the center of a grid cell, and still be included in the set of 
neighbor monitors used to calculate air pollution exposure at a particular grid 
cell. The default setting is infinite (i.e., no limit to the monitor’s distance to the 
center of the grid cell).  

 Maximum Relative Neighbor Distance specifies the maximum ratio for the 
distance of each included monitor to the distance of the closest monitor. The 
default setting is infinite.  

 Weighting Approach specifies whether BenMAP-CE should use inverse-
distance weighting for the monitors, or inverse-distance-squared weighting of 
the monitors. The default setting is inverse-distance weighting.  

The following examples illustrate how varying these options affects the final average 
concentration estimate. 

Example 1: Monitor Data VNA method  

Default options  

Consider the following example at a hypothetical rural grid cell, where there are 
relatively few monitors, and where the distance from a monitor to the center of a grid 
cell can be fairly large. With VNA, BenMAP-CE first identifies the set of "neighbor" 
monitors for each grid cell. The number of neighbors is usually in the range of about 
three to eight. In this case, assume that there are five monitors at distances of 25, 50, 
100, 200, and 400 km from the grid cell, with annual PM2.5 levels of 8, 13, 12, 18, and 15 
µg/m3, respectively. BenMAP-CE would calculate an inverse-distance weighted average 
of the monitor values as follows:  
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Example 2: Monitor Data VNA method  

Maximum Neighbor Distance = 75  

Using the same example that we used above, let us say you have specified a Maximum 
Neighbor Distance of 75 km, and left unchanged the default options (infinite value) for 
Maximum Relative Neighbor Distance. BenMAP-CE would only consider the first two 
monitors, and would calculate an inverse-distance weighted average of the monitor 
values as follows:  
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Example 3: Monitor Data VNA method  

Maximum Relative Neighbor Distance = 10  

Alternatively, if you left the Maximum Neighbor Distance at the default (infinite), but 
have set the Maximum Relative Neighbor Distance to 10, then BenMAP-CE would 
calculate the ratio of the distance for each monitor to distance of the closest monitor. In 
this case, the ratios would be 1 (=25/25), 2 (=50/25), 4 (=100/25), 8 (=200/25), and 16 
(=400/25), and BenMAP-CE would drop the monitor with a ratio of 16. BenMAP-CE 
would then calculate an inverse- distance weighted average of the monitor values as 
follows:  
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Example 4: Monitor Data VNA method  

Inverse-distance squared neighbor weighting  

In addition, you can specify an inverse-distance-squared weighting of the monitors. Let 
us say that you have left unchanged the defaults (infinite values) for Maximum 
Neighbor Distance and Maximum Relative Neighbor Distance, and specified that the 
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Weighting Approach is Inverse Distance Squared. BenMAP-CE would then calculate an 
inverse-distance-squared weighted average of the monitor values as follows: 
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Example 5: Monitor Data VNA method  

Maximum Neighbor Distance = 75  
Maximum Relative Neighbor Distance = 10  
Inverse-distance squared Weighting Approach 

Finally, you could specify changes to all three options: a Maximum Neighbor Distance 
of 75 km, a Maximum Relative Neighbor Distance of 10, and a Weighting Approach 
of Inverse Distance Squared weighting. BenMAP-CE would then calculate the following 
average:  
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5.2.3  Fixed Radius for Monitor Data  

If you choose the Fixed Radius (km) option, BenMAP-CE averages all of the monitor 
values within a fixed radius (measured in kilometers) that you specify. The way that the 
monitor values are averaged depends on the Weighting Approach that you choose 
after clicking the Advanced button. You can choose either Inverse Distance or Inverse 
Distance Squared weighting.  

Note that the default option with the Fixed Radius approach is that BenMAP-CE will not 
calculate an average for a grid cell if there are no monitors within the fixed radius 
(distance) that you specify. In the Advanced Options window, if you select Get Closest if 
None within Radius, then for those grid cells without any monitors within the fixed 
radius, BenMAP-CE will choose the nearest monitor (regardless of distance) and apply 
that value as the “average”.  

5.2.4  Custom Monitor Filtering for EPA Standard Monitors  

Custom Monitoring Filtering options apply only to the EPA Standard Monitors library 
in the United States setup; these are the only monitoring values that include all of the 
variables that BenMAP-CE needs in order to filter the data properly. This tool allows 
you to filter, map, and export your monitor data. You can reach the Custom Monitor 
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Filtering tool by first choosing your pollutant, data source (e.g., monitor library) and 
year on the Monitor Data window. 

 
Click the Advanced button. This will take you to the Advanced Options window.  

 
Click the Custom Monitor Filtering button. This will take you to the Filter Monitors 
window.  
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Note that the first five options are essentially the same for each pollutant, and the sixth 
option depends on the pollutant. The example above shows what the form looks like with 
PM2.5 as the selected Pollutant.   

1. Include specific monitors. Here you can specify particular monitor IDs that you 
want to include in your analysis. If this is left blank, then BenMAP-CE will include all 
monitors that meet the rest of the selection criteria. 

2. Exclude specific monitors. Here you can exclude any particular monitor IDs from 
your analysis. Here again, if this option is left blank then BenMAP-CE will include all 
monitors that meet the rest of the selection criteria.  

3. Restrict to particular states and/or latitude/longitude. You can choose monitors 
to include from particular states, by listing the two-character state abbreviation (e.g., 
CA = California). You can also choose monitors within particular latitude and longitude 
ranges. The default values for latitude (20 to 50) and longitude (-130 to -65) completely 
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include the continental U.S. Here again, if this option is left blank then BenMAP-CE will 
include all monitors that meet the rest of the selection criteria.  

4. Parameter Occurrence Code (POC)21. Sometimes, multiple monitors are collocated 
at the same site measuring the same parameter (e.g., to check precision).  The 
Maximum POC specifies the highest POC value allowed in the data. The default is a 
value of 4. And to choose one monitor when more than one monitor is in the same 
location, the POC Preference Order specifies the preferred ordering of POC codes.  

5. Methods.22 The Method codes listed indicate U.S. EPA-defined methods for collecting 
and analyzing samples; these codes depend on the pollutant. In the case of PM2.5, only 
federal-reference methods (FRM) are chosen by default -- specifically numbers 116 
through 120. In the case of Ozone (O3), all methods are checked by default. 

6. Parameters Specific to the Pollutant. The default options vary by pollutant. Below, 
we have described the options that appear with PM2.5 and ozone.  

 PM2.5 Monitor Filter:  The Number of Valid Observations Required per Quarter 
specifies the number of days of data needed. The default is to require 11 
observations per quarter. The Data Types to Use options specify whether to use 
data at Local conditions (parameter code 88101), Standard conditions (parameter 
code 81104), or Both.23 The default for PM2.5 is to use data at Local conditions. When 
data at standard and local conditions are both available at the same monitor 
location, the Preferred Type allows you to choose which to use – the default is 
Local. The Output Type option is designed to allow you to make the data reasonably 
consistent when both local and standard condition data are used. The default is to 
use the Local output type, so Standard condition data will be converted to Local.  

 Ozone Monitor Filter:  The ozone specific options differ from PM2.5 in large part 
because ozone is monitored hourly in the United States. The Number of Valid 
Hours specifies the number of hours needed for a particular day of monitoring to be 
considered “valid.”  BenMAP-CE counts the number of non-missing hourly values 
from the Start Hour through the End Hour and compares this number with that 
specified in the Number of Valid Hours.  

The Percent of Valid Days specifies the percent of days between the Start Date and 
the End Date that need to be valid for the monitor itself to be considered valid. The 

 
21 For information about data codes used in U.S. EPA’s Air Quality System, refer to the AQS Data Coding 
Manual: https://www.epa.gov/sites/production/files/2015-09/documents/aqs_data_coding_manual_0.pdf  
22 For more information, refer to U.S. EPA’s List of Designated Reference and Equivalent Methods: 
https://www3.epa.gov/ttnamti1/files/ambient/criteria/AMTIC%20List%20Dec%202016-2.pdf 
23 Particulate concentrations are expressed in either local conditions (volume is at temperature and pressure 
of the ambient sample) or at standard conditions (where the volume has been converted to standard 
conditions, typically 20° C at 760 mm Hg). 
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default is 50 percent of the days between May 1 and September 30.  The example below 
shows what the form looks like with Ozone as the selected Pollutant.    

 
You can view a map of your data with the specified filter options by clicking the Map 
button on the bottom left side of the Filter Monitors window.  This provides a brief 
preview of what will be shown once the data are loaded.   
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You can also export your data by clicking the Export button, which is found in the 
bottom left side of the Filter Monitors 
window.  A Save As window will appear, 
allowing you to save the data as a CSV file. 

5.3 Monitor Rollback  

The Monitor Rollback option allows you to 
quickly test what the benefits would be from 
reducing historical monitor levels. BenMAP-
CE has three methods to reduce, or "roll 
back," monitor data: Percentage Rollback, 
Incremental Rollback, or Rollback to a 
Standard. Each of these methods is depicted below. Note that with each of these 
methods you can use the same two interpolation algorithms (Closest Monitor or VNA) as 
you can use with Monitor Data.  

Percentage Rollback reduces all monitor observations by the same percentage:  

 
 

Incremental Rollback reduces all observations by the same increment:  

 

Fundamental Concept - Rollback 
 
A rollback is a simplified type of BenMAP 
analysis in which all Baseline scenario monitor 
data are reduced in the Control scenario using a 
single, uniform rule. BenMAP-CE offers three 
rollback options: Percentage rollback reduces 
all monitor observations by the same percentage. 
Incremental rollback reduces all observations 
by the same increment. Rollback to a standard 
reduces monitor concentrations as necessary to 
ensure all monitor observations are at or below a 
user-specified air quality standard.  
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Rollback to a Standard lets you choose a standard, and then reduces any monitor 
observations exceeding the standard to the level of the standard: 

 
5.3.1  Example: A Single Rollback in One Region  

To apply a monitor rollback, first click the Create Air Quality Grids button. On the Air 
Quality Grid Creation Method window, choose Monitor Rollback.  Click Next. 

  

 

There are three steps to the Monitor Rollback method.  

1. Select Monitors.  Choose the Rollback Grid Type from the drop-down list. This 
allows you to determine how detailed the rollback scenario may be. If the whole region 
(e.g., United States) will have the same type of rollback then you may simply choose a 
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grid outlining the area of interest. If you are interested in different rollbacks within a 
region, then you should choose a more finely detailed grid definition (e.g., states).   

If you use data from an existing dataset, then choose the Library tab, and from the 
drop-down list choose the Monitor Dataset and the Monitor Library Year.  If you 
want to use your own data, then choose the Text File tab. The file should have the 
monitor data format specified in Chapter 4:  Loading Data.  

When you have finished making your choices, click Next. 

 
2. Select Rollback Regions and Settings. In this section, you can specify the type of 
the rollback method(s) that you would like to use, as well as the location of the 
monitors that you want to roll back.  

Click the Add Region button to display the three rollback options: Percentage Rollback, 
Incremental Rollback, and Rollback to a Standard. 
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Choosing the Rollback Type and click OK.  Then, specify the amount of the rollback and 
the region to which you want to apply it. You can click on the map to select and deselect 
the states (or other defined areas depending on your rollback grid type) to add to the 
region. 

At the top of the map are five GIS toolbar icons, typically seen in mapping programs. 
The first four tools allow you to zoom in and zoom out, and to focus on the particular 
groups of grid cells that interest you. The fifth tool allows you to select grid cells 
graphically, by clicking or dragging a box over them. 

In this example, we specified a 10 percent reduction, a background of 0 ppb, and 
applied it to all monitors in the state of California (by clicking on the particular state in 
the GIS window). 
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To apply the rollback to all the states, you can simply click on the Select All button.  To 
clear the selections, click the Deselect All button.  At any time, you can change the grid 
cells that you have selected. To remove a region from the selection, click the “X” button 
next to the region ID. This particular example is quite simple, so we will use a more 
complicated example below.  

If you want to export your monitor data to a CSV file, click the option for Export After 
Rollback.  The exported data will be formatted in the same specific format required of 
BenMAP-CE Monitor Data import files discussed in Chapter 4.  

After defining the Rollback Regions and setting the Rollback Parameters, click on the 
Next button. BenMAP-CE will then perform the rollback you specified on the monitors 
in the grid cells that you have chosen.  

3. Additional Grid Settings.  

The third stage is similar to the Monitor Data grid creation method. As with monitor 
data, you need to specify the Interpolation Method (Closest Monitor, VNA, or Fixed 
Radius) and the Grid Type.  

  
By checking the option for Make Baseline Grid (in addition to Control Grid) you tell 
BenMAP-CE to create a baseline grid at the same time as the control grid. The baseline 
grid uses the same parameters as the control grid, with the exception of the rollback. 
That is, the baseline uses the same monitor data, interpolation method, and the same 
grid type. The two resultant grids will serve as both baseline and control scenarios and 
are automatically selected in the “Air Quality Surfaces” stage of the analysis.  
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Note that there is an Advanced button that lets you select the Maximum Neighbor 
Distance (in km), Maximum Relative Neighbor Distance, and Weighting Approach.  
The specific availability of advanced features depends on the interpolation method that 
you choose.  The Advanced Options window is described in more detail in Section 
5.2.4.  You can view a map of the inputs to the rollback grids that you are creating, as 
well as the grids themselves by accessing the Monitor Map.  To do this, click on the 
Advanced button, then the Custom Monitor Filtering button, and then the Map 
button (on the Filter Monitors window). 
 

5.3.2  Example: Combining Three Rollback Approaches in Different Regions  

BenMAP-CE allows you to use different approaches to rolling back air quality data 
among regions. In this example, we’ll use the United States setup to combine the three 
rollback types: Percentage Rollback, Incremental Rollback, and Rollback to a Standard.  

Start by clicking on the Pollutant button in the left-hand pane of the main screen, and 
choosing Ozone. Next, click Baseline under Source of Air Quality Data.  Select Monitor 
Rollback as the Grid Creation Method.  On the Monitor Rollback: (1) Select Monitors 
window, select the Rollback Grid Type (State), Monitor Dataset (EPA Standard 
Monitors O3) and Monitor Library Year (2000), and click Next.  

On the Monitor Rollback Settings: (2) Select Rollback Regions and Settings 
window, click the Add Region button and select the Percentage Rollback method.  Click 
OK.  Enter 10 for the Percent. In the previous example, we included only one state in 
the rollback region. In this example we want to create three regions. Click on the three 
western-most states to add them to the first region. The states you have added to the 
region will fill in, as in the picture below. 
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To add states with a second type of rollback, click on the Add Region button, choose the 
rollback type, and then click on the states to include in this second region, which 
BenMAP-CE denotes as Region 2. In this example, we have chosen an Incremental 
Rollback with an Increment of 5 and a Background of 0, and applied it to the 14 next 
western-most states.  
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The map now depicts two rollback regions. We can toggle back and forth between each 
region by clicking on the button on the legend on the left side of the map. Any states 
that have not yet been included in a region may be added to an existing region, or we 
may create one or more regions for these remaining states. Note that once states have 
been included in a rollback region, they cannot be included in a different rollback 
region. In our example, the three western-most states are highlighted in gray. 

If you want to add or remove states from a defined region, make sure you select the 
appropriate region by clicking on the button to the left of that region before clicking on 
the map to select or deselect the state(s). 

To add a third rollback type covering the rest of the states, click again on the Add 
Region button, and then choose the rollback type. However, instead of individually 
choosing the states, simply click the Select All button. This will select all of the states 
that are not yet included in a region, and these remaining states will now become 
Region 3.  

In this third region, we have chosen a Rollback to a Standard, which involves two 
groups of parameters - those associated with the Attainment Test, which determines 
whether a monitor is in attainment (meets the standard), and those associated with the 
Rollback Methods, which are used to bring out-of-attainment monitors into 
attainment.  
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The Attainment Test parameters are Daily Metric, Seasonal Metric, Annual Statistic, 
Ordinality, and Standard.  (Note:  You will need to use the scroll bar to view more 
detail on the left side of the screen.) 

In this step BenMAP-CE calculates the metric to be used to determine whether a 
monitor's values must be rolled back and, if so, how much (e.g., if Metric is D8HourMax, 
BenMAP-CE calculates the 8-hour daily maximum for each day at each monitor).  

A monitor is considered in attainment if the nth highest value of a daily metric specified 
by Metric is at or below the value specified by Standard, where n is the value specified 
by Ordinality.   For example, if Metric is D8HourMax, Ordinality is 4, and Standard is 
85, a monitor will be considered in attainment if the fourth highest value of the eight- 
hour daily maximum is at or below 85 ppb.  

 

  
The Attainment Test can also be used for seasonal metrics (by choosing previously 
defined seasonal metrics from the drop-down list below Seasonal Metric), as well as 
for annual metrics (by using the drop-down list below Annual Statistic). For example, 
if you want the annual mean ozone level to stay below 60 ppb, then you would choose 
the daily 24 hour mean (D24HourMean) from the drop-down list below Daily Metric, 
choose Mean from the drop-down list below Annual Statistic, and set the Standard to 
60. (Note that in this case Ordinality cannot be chosen because there is only a single 
annual value.)  
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The Rollback Methods parameters determine the rollback procedures used to 
simulate out-of-attainment monitors coming into attainment: 

 Interday Rollback Method (with associated Background level) – These are 
used to generate target values for the metric specified by the Attainment Test.  
Method types include Percentage, Incremental, and Peak Shaving. 

 Intraday Rollback Method (with associated Background level) – These are 
used to adjust hourly observations to meet the target metric values generated in 
the previous step.  Method types include Percentage and Incremental. 

The methods involved for each can be somewhat complicated, so we have included a 
section in Appendix A: Monitor Rollback Algorithms which goes through several 
examples. 

5.4 Open *.aqgx File 

The final option for uploading an Air Quality Grid is to select the Open *.aqgx File 
option from the Choose a Grid Creation Method window. 

 
Choosing this option will activate the Open File Browser button located directly below 
this option.  Click the Open File Browser button.  This will cause an Open window to 
appear, allowing you to search for an Air Quality Grid (*.aqgx file) that has already 
been created.  Select a file and click Open.  The file path and name should appear in the 
box beside the Open File Browser button.  Click Next to close the window and begin to 
create the map layer. 
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5.5 Frequently Asked Questions  

How can I generate a map of an air quality grid and export it?  

When viewing any of the displayed maps n the GIS Map tab (lower right frame of the 
main window), click on the GIS toolbar icon for Save Shapefile (looks like a 3.5-inch 
diskette).  You can choose the Layer(s) to Export from the dropdown menu and select 
data to include in the exported shapefile. Follow the prompts to provide a name and 
location for the file.  BenMAP-CE will export a set of files (.dbf, .prj, .shp, .shx) associated 
with the shapefile that you can use with any GIS viewer.   

 

To export the map as an image, click the Prepare Print Layout icon (immediately 
above the Save Shapefile icon).  This will use built-in DotSpatial GIS tools to allow you 
to save the map as a formatted image (.png) file. 



  Chapter 5 – Creating Air Quality Surfaces 

BenMAP-CE User’s Manual March 2023 
5-26 

 

 

For the Rollback to a Standard option, why are there Interday and Intraday rollback 
options?  

The Interday Rollback Method option identifies the approach (e.g., Percentage) to 
reduce daily air pollution levels, in order to meet the specified standard. (In other 
words, there is more than one way to reduce daily pollution levels so as to meet the 
standard you have chosen, and BenMAP-CE lets you choose from among those 
approaches.) The Background level associated with the Interday Rollback Method 
specifies the bound, below which, BenMAP-CE will not make adjustments to daily levels. 

 
The Intraday Rollback Method option is only relevant for hourly air pollution data, 
like ozone measurements. This option specifies the approach (e.g., Percentage) used by 
BenMAP-CE to reduce hourly air pollution levels to reach the target metric values. That 
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is, once you have chosen the approach to reduce daily air pollution levels, on any given 
day there is more than one way to reduce the hourly air pollution values to meet the 
targeted pollution level for that day. The Background level associated with the 
Intraday Rollback Method specifies the bound, below which, BenMAP-CE will not 
make adjustments to hourly levels.  

The Interday and Intraday options are complicated. Appendix A on Monitor Rollback 
Algorithms explains these options in more detail and gives some numerical examples.  

Can I use air quality grids based on different Grid Types in the baseline and control 
scenarios?  

No. In any given analysis, you need to use the same Grid Type in the baseline and 
control scenarios.  

Can I use air quality grids of the same Grid Type but based on different Grid Creation 
Methods?  

Yes. In any given analysis, you may use air quality grids made with different methods. 
Air quality grids made with Model Data and Monitor Data may be used interchangeably, 
if desired. Similarly, air quality grids made with different interpolation methods may be 
compared. However, it generally is not recommended to create grids with different 
methods and use them in the same analysis.  
 

Can I do an analysis with multiple pollutants?  

You can currently only estimate impacts one pollutant at a time; however, BenMAP-CE 
allows you to aggregate the results of more than one pollutant. This is discussed in 
Chapter 7: Aggregating, Pooling, and Valuing.  

Why does it take so long to generate an Ozone Air Quality grid if there are a lot of grid 
cells?  

It can take a long time to create an air quality grid because the file being generated can 
be quite large. In some cases, air quality grids can be several hundred megabytes in size. 
(One reason the ozone files are large is that the definition of ozone has, by default, four 
metrics. If you do not need all of the default metrics for the health impact functions in 
your database, then delete the unneeded metrics and BenMAP-CE will run faster and 
generate smaller air quality grids. This is an advanced step, so do not do it if you are 
unsure.)  The type of computer you use can also affect processing speeds.  Refer to 
Chapter 1, Section 1.3 for recommended hardware specifications. 

How do I access data in an Air Quality Surface?  

You can access the data in an air quality grid by going to the Tools menu and choosing 
the Export Air Quality Surface option. (The Tools menu is available on the toolbar of 
the main BenMAP-CE window.) Locate the air quality grid from which you want to 
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export air quality data and then give a name to your exported file. BenMAP-CE will 
generate a text file that you can then examine. This is discussed in detail in Chapter 3, 
Section 3.2.1 (Tools).  

How do I perform a rollback to simulate attainment with an annual and daily PM2.5 
standard? 

Unfortunately, BenMAP-CE will roll back to either an annual standard or a daily 
standard—but not both. If this feature is of interest to you, please contact the 
BenMAP-CE developers at benmap@epa.gov.  

 

mailto:benmap@epa.gov
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Chapter 6  
 

Estimating  
Incidence 

 
 
 
 
 
 
 
 
 
 

In this chapter… 
 Get an overview of how BenMAP-CE estimates the incidence 

of health outcomes. 
 Learn to create a health impact configuration.  
 Learn about baseline and control scenarios.  
 Learn the difference between Point Mode and the Monte 

Carlo analysis options.  
 Learn how to run, save, and re-open a configuration. 
 Learn how to view and export Incidence Results. 
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To estimate changes in the incidence (or, counts) of adverse health effects from air 
pollution, you will need to create and run a BenMAP-CE configuration file (*.cfgx). A 
configuration is a reusable file that specifies the air quality grids, health impact 
functions, population data, and other parameters necessary for an analysis. It is a 
record of the choices you make in estimating the change in adverse health effects 
between a baseline and control scenario. The choices include the following:  

 The pollutant and air quality grids for the baseline and control scenarios;  

 The year for the analysis;  

 The population dataset for the analysis; 

 The health impact functions to be used in estimating adverse health effects; and 
Whether the analysis will focus on a single "point" estimate (Point Mode), or a 
range of results that mirror the variability in the inputs to the health impact 
functions (Monte Carlo-generated percentiles).  

BenMAP-CE gives you flexibility in creating, 
editing, and saving configuration files. You 
can open an already existing configuration 
and proceed directly to estimate incidence. 
Or, you can create a new file, and then 
estimate incidence. In addition, you may 
save any edits made to existing 
configuration files.  After calculating the 
change in adverse health effects, BenMAP-
CE saves the results in a "configuration 
results" file with a .cfgrx extension. The 
results obtained from running a 
configuration are sometimes referred to as 
“raw” results because they represent the 
estimated change in incidence for each air 
quality grid cell in a given scenario; they 
have not been aggregated, pooled, or valued 
(see Chapter 7). 

To load a previously saved configuration, click Estimate Health Impacts, which is 
beside Step 2 in the BenMAP-CE tree menu (on the left side of the main window). An 
Open Existing Configuration window will appear, as shown below: 

 Fundamental Concept – Configuration Files 
 
A Health Impact Configuration file (*.cfgx) 
includes all the user-specified data and choices 
for a BenMAP-CE run made prior to executing 
the health impact function step. This includes 
specified air quality grids, air quality surfaces, 
population data, health impact functions, and 
incidence datasets. This file is not saved 
automatically but can be saved by clicking the 
appropriate button.  Configuration files can be 
useful for running BenMAP-CE in batch mode 
via the Command Line feature (see Appendix 
L). 
 
Once you execute the Health Impact Functions, 
BenMAP will save a Health Impact 
Configuration Results file (*.cfgrx). This file 
contains the same information as the .cfgx file, 
plus the health impacts results from running 
the health impact functions on the specified air 
quality surfaces.  
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To open an existing Configuration file, click the top file browser button.  To open an 
existing Configuration Result file, click the bottom file browser button.  After selecting 
either of these options, search and select a file to load in the Open window.  The file 
path and name should appear in the box next to the file browser button.  Once you have 
selected the desired option, and are satisfied with the file selection, click OK. 

6.1 Introduction to Estimating Health Incidence  

Health impact functions relate a change in the concentration of a pollutant to a change 
in the incidence of a health endpoint (i.e., premature mortality or work-loss days). It is 
typically derived from the estimated relationship between the concentration of a 
pollutant and the adverse health effects suffered by a given population in an 
epidemiology study. For example, the 
pollutant concentration being 
measured may be particulate matter 
(PM2.5), and the population response 
may be daily premature deaths. For 
the purposes of estimating benefits, 
we are not interested in the health 
impact function itself, but rather the 
relationship between the change in 
concentration of the pollutant, and 
the corresponding change in the 
population-health response. We may 
want to know, for example, if the 
concentration of PM2.5 is reduced by 
10µg/m3, how many premature 
deaths will be avoided?  

To estimate changes in health 
incidence, the first step is to calculate 
the change in pollution 
concentrations for a particular policy scenario, such as an air quality improvement 
produced by a set of emissions controls. The concentration change in a pollutant is the 

Fundamental Concept: Health Impact Function or 
Concentration-Response Function 
 
A health impact function calculates the change in the 
number of adverse health effects associated with a 
change in exposure to air pollution. The inputs to a health 
impact function include the change in air quality 
concentration for a pollutant (using a specified metric 
such as annual D24HourMean); the size of the affected 
population (of specified age, race and ethnicity); the 
baseline incidence rate of the adverse health effect; and 
an effect coefficient derived from epidemiological studies. 
 
The coefficient for the health impact function is known as 
Beta (ß) and is derived from epidemiological studies. The 
value of ß typically represents the percent change in a 
given adverse health impact per unit of pollution. 
 
Health impact functions are derived from concentration-
response (C-R) functions, which estimate the 
relationship between the likelihood of adverse health 
effects as a function of concentration of an air pollutant. 
The terms C-R function and health impact function are 
often used interchangeably. 
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increment between the baseline scenario and the control scenario. This increment and 
a gridded population dataset are then used in health impact functions to calculate the 
change in health incidence that would result from this change in pollution. These 
functions are based on epidemiological studies and can be selected by the user. 
Typically, these health incidence results show the decrease in health incidence (e.g., the 
decrease in asthma, bronchitis, mortality) due to a decrease in pollution. In BenMAP-CE, 
the selected health impact functions are stored in configurations, which can be re-used 
over and over again. 

 

6.2 Create a Health Impact Configuration  

There are three major steps to creating a new configuration. First, select a Pollutant 
and specify the Source of Air Quality Data for the Baseline and the Control layers 
using the BenMAP-CE tree menu on the left side of the main window.  Next, choose the 
Population Dataset and Health Impact Functions that you want to use in your 
analysis. Finally, using the Advanced button on the Health Impact Functions window, 
specify whether BenMAP-CE will run in Point Mode or perform a Monte-Carlo analysis 
(default setting).  (See Section 6.2.3 Advanced Configuration Settings for additional 
detail.) 

Note:  As you move through the analysis steps, the BenMAP-CE tree menu will update 
its “stoplight” colors to reflect progress.  Yellow indicates an operation has not yet 
started.  Green indicates that an operation has been successfully completed.  Red 
indicates that an operation completed, but you may need to re-run this step. 

6.2.1 Air Quality Surfaces – Pollutants and Air Quality Grids 

Using the BenMAP-CE tree menu, specify the pollutant(s) of interest.  Click the 
Pollutant tree menu item to open the Pollutant Definition window.  Select the 
pollutant(s) of interest by clicking on an item in the Pollutants box (left side) and then 
clicking the Add button to move the pollutant(s) to the Selected Pollutant box.  To 
deselect a pollutant and remove it from the Selected Pollutant box, click on the item in 



  Chapter 6 – Estimating Incidence 

BenMAP-CE User’s Manual  March 2023 
 6-5 

the Selected Pollutant box and click the Remove button. You can also add a pollutant 
by dragging it from the left-hand box to the right-hand box.  

 

If you want to view or modify any pollutant details, click the box next to Pollutant 
Details and the window will expand to display details and options for the highlighted 
Pollutant (left box). Note that the details are based on the defined Pollutant 
Definitions (see Chapter 4: Loading Data). 

 

 

Once your pollutant is selected, click OK to close the form.  The stoplight for Pollutant 
will change from yellow to green when the operation is successfully completed. 
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Next, select air quality grids for the Baseline file and Control file. You may choose 
existing air quality grids by double-clicking the Source of Air Quality Data from the 
tree menu.  The Open Existing AQ Data window will be displayed.  Select air quality 
grids, designated with an ‘.aqgx’ extension, for Baseline and Control. To create a new 
air quality grid, follow the steps outlined in Chapter 5: Creating Air Quality Grids.  

 

The Baseline file contains the air quality metrics for the scenario assumed to occur 
without any change in policy. The Control file specifies the air quality metrics assuming 
that some type of policy or change has been implemented. The air quality grids should 
be for the same pollutant, and should also be based on the same Grid Type.  

If you choose a particular Grid Type (e.g., County) for the Baseline file, then the same 
grid type must be used in the Control file. Conversely, it would not be possible to use 
County grid-type in the Baseline and a Tract grid-type in the Control file.  

 

The Pollutant specified in the air quality grids determines the suite of Health Impact 
Functions available for the configuration. Only functions associated with the specified 
Pollutant will be available for the configuration. Furthermore, if only certain Metrics 
associated with the pollutant are present in one (or both) of the air quality grids (see 

Fundamental Concept – Baseline and Control Scenarios 
 
 
BenMAP-CE requires both a Baseline Scenario air quality surface and Control Scenario air quality surface to 
estimate the effects of a change in air quality (Delta). Both baseline and scenario air quality surfaces are required 
regardless of whether you use modeling data or monitoring data. 
 
• The Baseline Scenario characterizes the air quality levels observed or expected in the absence of the policy 

change you are evaluating. The baseline is sometimes referred to as “Business as Usual.” The Baseline 
scenario is usually considered to be the reference scenario against which to compare a potential scenario 
characterized by the implementation of regulations.  

• The Control Scenario in BenMAP is the scenario in which emissions from one or more source sectors are 
changed (increased or decreased) from the Baseline scenario. The Control scenario usually represents 
expected air quality levels after a new regulation or set of regulations has been implemented.  

 
The air quality Delta is the change in air pollution between the Baseline air quality grid and the Control air 
quality grid (Baseline minus Control). BenMAP-CE uses the air quality Delta as the input to the health impact 
function. 
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the information in Chapter 3 on monitor and 
model data formats for more information on 
how this can occur) Health Impact Functions 
associated with those Metrics will show a 
notification that the air quality surface does not 
provide the metric specified in the health impact 
function and the annual metric will be used 
instead.   

 

Once the Baseline and Control files are selected, click OK to close the form.  The 
stoplights for each of these under Source of Air Quality Data will change from yellow 
to green when the operation is successfully completed. 

6.2.2  Estimate Health Impacts – Population and Health Impact Functions  

The second step in creating a health impact configuration is to select the Population 
Dataset, Population Year and Health Impact Functions. If you want to open an 
existing configuration, double-click the Estimate Health Impacts tree menu item and 
select the file to open.  Follow instructions from Section 3.1.2 Estimate Health 
Impacts.  

To continue creating a new configuration, double-click Population Dataset in the tree 
menu.  Here, you can choose the Population Dataset and Population Year that will be 
used in the analysis. The values in the drop-down list for Population Year depend on 
the range of values in your Population Dataset. (See Chapter 4: Loading Data.) 

 

Warning 
 
BenMAP-CE will evaluate the compatibility 
between provided air quality metrics and 
health impact functions. For example, if the air 
quality surface provides an annual pollutant 
metric for a health impact function that uses a 
daily pollutant metric, BenMAP-CE will 
provide a warning message (shown below). 
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Clicking the Map option in the bottom left hand corner will open a separate Population 
Map window. (Warning: this procedure can require a significant amount of time to 
complete as it creates the population grid and loads the population growth weights).  
This provides a map of your selected population.  If you want to view a different 
population subgroup based on race, gender, ethnicity, or age range, choose from the 
available drop-down list (this runs fairly quickly as it uses the same population grid 
already loaded).  The map will refresh automatically. 

To change the Population Dataset or Population Year, click on their respective drop-
down list and click Draw to update the map and display new results.  Warning:  This 
requires BenMAP-CE to recalculate the grid. 

Click the close (‘×’) button at the top of the Population Map window to close it.   

Clicking OK on the Population Dataset window will close the window and change the 
stoplight color to green in the tree menu. 

Next, double-click Health Impact Functions on the tree menu to display the Health 
Impact Functions window.   
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The Health Impact Functions window is split into two display frames. The upper 
frame presents the Available Health Impact Functions, which you may select, and the 
lower frame shows the Selected Health Impact Functions that you have already 
selected. Both frames have a tree structure and the ability to change the order of the 
fields for easy viewing of the functions. 
Above the Available Health Impact 
Functions frame, there are a series of 
buttons that give you the option to select 
different datasets and filter options for each 
one. 

To add studies to your configuration, 
simply click to select the health impact 
functions of interest in the top frame and 
drag them down to the lower frame. You 
can do this for blocks of health impact 
functions by selecting the Groups option, 
clicking on the header of an endpoint 
group, and dragging the entire endpoint 
group into the lower frame.  And, you can use the options to Filter Dataset, Filter 
Endpoint Group, and Filter (by keyword) to filter the list according to your preference.  
Once you are satisfied with the filter, click the Add Selected button to apply the 
selection to the list of selected functions.  

 

BenMAP-CE Guidance and Best Practices 
 
When selecting HIFs for your analysis, one option 
is to use the ozone and PM2.5 configurations used 
by EPA.  These are available on the BenMAP-CE 
website (http://www2.epa.gov/benmap/benmap-
community-edition). These functions are derived 
from the epidemiology literature described in the 
appendices to this user manual.   
 
If BenMAP-CE does not have pre-installed functions 
for a pollutant or a health impact that you would 
like to study, you may need to develop your own 
health impact function(s) which involves a careful 
review of the epidemiological literature. We 
recommend consulting with an epidemiologist or 
other public health professional if you need to 
develop your own functions.   
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If you want to delete some of the health impact functions that you added to your 
configuration, just highlight the studies of interest and hit the Delete key on your 
keyboard (or click the Delete Selected button on the form).  

BenMAP-CE displays information for selected studies in two broad categories: 
Function Identification (column headings in black text) and Function Parameters 
(column headings in pink text). The Function Identification includes information such 
as the Endpoint Group, Endpoint, Metric, Location, and other variables. This 
identification information is useful when distinguishing between multiple health impact 
functions. The Function Parameters include those variables that you may directly edit: 
Race, Ethnicity, Gender, Start Age, End Age, Geographic Area, Incidence Dataset, 
Prevalence Dataset, and Variable Dataset.  
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Clicking on a column header will 
sort the health impact functions 
according to that variable. For 
example, clicking the Start Age 
column will sort the functions by 
youngest to oldest Start Age. You 
can add the same study to the 
selection multiple times, and 
then make edits, in order to be 
able to calculate the impact of 
changes in these variables of the 
function. For example, you can 
perform an analysis using 
multiple versions of the same 
function with different age 
ranges. To edit the default Start 
Age and End Age, just highlight 
the appropriate cell and type in 
the desired age values. Keep in 
mind that these ages represent 
inclusive age bounds, so if you type in ‘10’ and ‘12’ this will include all children ages ten, 
eleven, and twelve years old. If you want to apply a single age year (e.g., only children 
who are eleven years old), then type the same year (e.g., ‘11’) in both the Start Age and 

the End Age. Note that the accuracy of the 
populations calculated for these age ranges will 
depend on the specificity of the population data 
present in your selected population dataset.  
Use the drop-down lists in the Incidence 
Dataset, Prevalence Dataset, and Variable 
Dataset fields. 

Added in version 1.4, the Geographic Area 
field allows users to assign health impact 
functions to either the entire area of analysis 
(“Everywhere”), to a specific subset of that area 

(defined by a specific grid definition), or to all areas outside of one or more specified 
geographic areas (“Elsewhere”). Note that if an air quality cell intersects multiple 
geographic areas, BenMAP-CE will calculate health impacts for the geographic area 
containing the majority of the air quality cell. To access these options, select the drop-
down list under the Geographic Area header. Please note that users must specify 
whether grid definitions can be linked to health impact functions when defining new 
grid definitions or modifying existing grid definitions.  

 

Fundamental Concepts – Incidence, Prevalence, and 
Variable Datasets 
 
The Incidence Dataset contains baseline incidence rates, or 
the average number of health outcomes (e.g., number of hospital 
visits or deaths) per person, per unit of time (generally a day or 
a year)—from air pollution as well as all other causes. These 
rates are used to calculate the baseline number of adverse 
health effects that are occurring in a population. 
 
The Prevalence Dataset contains prevalence rates, or the 
percentage of individuals in a given population who already 
have a given adverse health condition. Prevalence rates are used 
to calculate changes in health conditions among those who 
already have a health condition, such as asthmatics experiencing 
asthma symptoms exacerbated by air pollution.  
 
The Variable Dataset contains sociodemographic and economic 
data not contained in other setup datasets that may be used in 
health impact functions and valuation functions. Examples of 
socioeconomic variables that might be included in Variable 
Data include median household income and percentage of 
population living below the poverty line.  Variables included in 
the dataset must be associated with a particular Grid 
Definition). 
 

Warning 
 
After selecting your health impact functions, 
Check the Incidence Dataset column in the 
bottom window and make sure that the 
correct incidence dataset is selected for each 
health impact function. This is a step which is 
often missed and can result in errors. Recall 
that in order to use a baseline incidence rate 
with a particular health impact function, the 
endpoint group and endpoint of the baseline 
incidence rate must match the endpoint group 
and endpoint of the health impact function 
exactly. 
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6.2.3  Advanced Configuration Settings  

Clicking the Advanced button at the bottom of the Health Impact Functions window 
gives you access to a number of options for tailoring your assessment.     

The Point Mode and Monte Carlo options allow you to generate an average incidence 
estimate, or a range of results that mirror the uncertainty in the inputs to the health 
impact functions. By default, BenMAP will run in Monte Carlo mode. If you select the 
option for Run in Point Mode, BenMAP-CE uses the mean values of the inputs to the 
health impact functions, and generates a single "point estimate" of the change in 
adverse health effects.  

With the Monte Carlo (default) option, you can generate a number of estimates that 
mirror the variability in the inputs to the health impact functions. The Monte Carlo 
option allows you to generate specific percentiles along the estimated incidence 
distribution. For example, if you specify 20 Percentiles (default value), then BenMAP-
CE will generate incidence estimates of the 2.5th percentile, 7.5th percentile, and so on, 
up through the 97.5th percentile. The number of points suggested in the drop down 
menu for Percentiles varies between 10 and 100. The greater the number of chosen 



  Chapter 6 – Estimating Incidence 

BenMAP-CE User’s Manual March 2023 
6-13 

points, the greater the amount of time BenMAP-CE will need to process the results. The 
relationship between the number of points and time to process is essentially linear, so a 
doubling of the number of points would double the processing time.  

In the Monte Carlo (default) option, the program will perform 10,000 iterations to 
calculate uncertainty. You may change this number, but the greater the number of 
iterations, the longer the processing time.  

 

If you choose to Run in Point Mode, the field for Percentile points for Monte Carlo 
sampling is disabled and will be ignored (treated as zero). However, with the default 
Monte Carlo option, the program will still report a point estimate. As discussed in 
Chapter 7 on Aggregation, Pooling, and Valuation, by choosing the Point Mode, you limit 
your ability to pool the results. You cannot conduct fixed effect/random effects pooling, 
or any other procedure that depends on knowing the distribution, or the range of 
variability of the incidence estimates.  

The Air Quality Threshold indicates the minimum air quality value that BenMAP-CE 
will use to quantify health impacts. That is, air quality metrics below the threshold will 
be replaced with the threshold value. With a threshold of zero, there is no impact on the 
estimates generated by the health impact functions. However, as the threshold 
increases, then it will have a progressively larger impact on the incidence estimate. The 
Air Quality Threshold option allows you to explore the impact of any given threshold 
on the incidence estimate. This can also be useful for scenarios where you might want 
to know the incidence associated with changes in air quality occurring only above a 
standard. 

If you are estimating impacts for specific population subgroups (e.g., stratification by 
gender, age, race, or ethnicity), BenMAP-CE provides two options for calculating 
baseline incidence:  
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1) You can use incidence rates averaged over gender, race, and ethnicity (default).  
(This option must be selected for the rates supplied with BenMAP-CE, as they are 
not stratified by gender/race/ethnicity).   

2) You can use incidence rates that match the gender, race, and ethnicity selected with 
your health impact function.  (You must import stratified rates for use with this 
option). If you select this option and have not imported rates that match each 
subgroup, the groups without incidence rates will not be included in the 
calculations and will have point estimates of zero.  

It is recommended that users select this second option if your incidence/prevalence 
data include overlapping groups. For example, the asthma exacerbation prevalence rate 
for ages 5-17 has two race groups, one is “ALL” with value 0.107 and the other is 
“BLACK” with value 0.177.  

If the first option (above) is selected, BenMAP will use the arithmetic mean of both 
values (0.142) as the prevalence rate in its calculations, regardless of whether users 
select “ALL” or “BLACK” as the race category—or left the race category blank. 

If the second option is selected, and if users select “ALL” as the race category (or leave it 
blank), BenMAP will first check if this dataset has overlapping race groups to avoid 
double counting of individuals in incidence or prevalence calculations. In this example, 
BenMAP will use the “ALL” prevalence rate of 0.107, which exactly matches the name of 
the selected race.  Thus, it is recommended that users select the second option unless 
the user is certain that incidence or prevalence rate categories do not overlap.  

After making selections for calculating impact functions, BenMAP-CE allows you to save 
the configuration for future use. Click the Save As (*.cfgx) button and specify a file with 
a .cfgx extension. Advanced settings options will be displayed in the Audit Trail.  

6.3  Run Health Impact Configuration  

To execute the calculation of incidence for the health impact functions in the 
configuration, click the Run button on the bottom right-hand corner of the Health 
Impact Functions window.  

A confirmation window will pop up to notify users of key data points and raise potential 
issues with the run, shown below. To proceed, weigh these limitations and click Run 
and save (*cgfrx). BenMAP-CE will require that you specify a file in which to save the 
results, with a .cfgrx extension.  
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6.4 View and Export Health Impact Results 

The Health Impact Results report gives you the opportunity to examine the incidence 
results of each health impact function applied at the grid-cell level, or temporarily 
aggregate them to, say, the state or national level. The configuration results files (.cfgrx) 
contain “raw” health impact estimates that you have not yet aggregated, pooled, or valued.  

To begin, click the Health Impact Results tab in the upper portion of the main window.  To 
display incidence results for a single study (i.e., health impact function), double-click on the 
study of interest (or select the study and click the Show Results button). Your results will be 
generated and displayed in a results table (on the Data tab).  If you choose a single 
study, you will also have options to view results on the GIS Map tab and in a simple bar 
chart (view in Chart tab.) To change the selected study, double-click on a different 
study choice or select the study and click the Show Results button to refresh the 
display. 
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The Health Impact Results tab provides a simple tool to aggregate the raw incidence 
results.  You may select an aggregation level from the Aggregation for raw data drop-
down list. If you do so, the Data 
table will refresh to display the 
incidence results aggregated to the 
selected level. 

If you check the option to Create 
data (table) for multiple studies, 
results will only be available in the 
Data tab.  For example, you might 
want to select three different studies 
and view aggregated results at the 
national level.  As you modify your 
choices, the display will be updated 
accordingly.  

On the Data tab, clicking the Select 
Result Fields button opens a 
Configuration Results Report window that allows you to choose the columns that will 
appear in the results table.  

BenMAP-CE Guidance and Best Practices 
 
Below is a list of common culprits that may result in 
BenMAP-CE calculating a point estimate of zero. If you are 
generating zero results, begin by double checking the 
following: 
 
• Did you choose the correct pollutant? 
• Does the pollutant definition contain analogous metrics 

as the health impact function? 
• Does the air quality delta (baseline – control) show a 

change in air quality concentrations? Does it show the 
necessary pollutant metrics based on the HIF? 

• Does the Control scenario have lower air quality values 
than the Baseline scenario? 

• Did you do less than 100% monitor rollback? 
• Does the Population Dataset match the location of the 

Grid Definition? 
• Does the Baseline Incidence dataset match the 

Population Dataset? 
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 Grid Fields permit the inclusion of Column and Row fields, which can be helpful 
in identifying the grid-cell of a particular line in the report. For example, when 
results have been temporarily aggregated to the national level.  

 Health Impact Function Fields permit the inclusion of various fields which 
describe or define a function (e.g., Endpoint Group, Endpoint, Pollutant, Metric, 
Author, Year, Start Age, End Age, Gender, Race, Ethnicity, Beta, Beta Distribution).  
These fields can be helpful in identifying the health impact function associated 
with a particular line in the report.  

 Result Fields permit the inclusion of fields associated with results of this 
analysis (e.g., Point Estimate, Population, Delta, Mean, Percentiles).  

 

At the bottom of the Data tab, there is also an option to specify the number of digits that 
appear after the decimal point (click the up or down arrows to edit the number beside 
the Digits After Decimal Point field, or type a number directly in the box). Also at the 
bottom of the Data tab is an option to display All Percentiles rather than the default 
2.5th and 97.5th percentiles. 

Table 6-1 provides a summary of the optional fields that have not been previously 
described in this section.  
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Table 6-1. Selected Variables in the Reports Based on the APVR file  

Variable Description 
Column The column of the grid cell of the result. For grid cell level results, 

this is the column of the grid cell. For county and state level 
results, this is the state FIPS code. For national results, this is 
always 1.  

Row  The row of the grid cell of the result. For grid cell level results, this 
is the row of the grid cell. For U.S. county results, this is the county 
FIPS code. For U.S. state and national results, this is always 1.  

Dataset  Specifies the dataset from which a health impact function was 
chosen. 

Population Population provides the number of persons used in the health 
impact function calculation.  

Delta  The difference between the baseline and control scenarios for the 
metric used in the health impact function. Calculated by 
subtracting the metric value in the control scenario from the 
metric value in the baseline scenario.  

Point Estimate  The point estimate for the result from the health impact function. 
The point estimate is generally based on the mean estimate of the 
"Beta" from the health impact function.  

Mean  Mean of the points in the Monte Carlo-generated distribution for 
this result. The mean is set to missing if the Point Mode option is 
chosen.  

Baseline  Estimate based on the baseline function, which typically estimates 
health impacts due to all causes (not just air pollution-related 
causes).  

Percent of Baseline Estimates the percentage change in health impacts (e.g., hospital 
admissions) due to the change in air quality from the baseline to 
the control scenario. Calculated by dividing the Point Estimate by 
the Baseline.  

Standard Deviation Standard deviation calculated based on the points in the Monte 
Carlo-generated percentiles for this result.  

Variance Variance calculated based on the points in the Monte Carlo-
generated percentiles for this result. 

Percentiles The number of percentiles depends on the number of points in 
Monte Carlo-generated percentiles for this result. 

Once all of the options have been selected for your report, you can export the Health 
Impact Results data. First select the Data tab then click the Export button. This will 
bring up a window allowing you to name the file you want to save. Note that by default 
BenMAP-CE will export the file to the CFGR folder. Carefully name the file that you are 
generating so that you will recognize it in the future! 
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6.5 Frequently Asked Questions 

How do I know which health impact functions to use? Which functions does EPA use? 

One option regarding the choice of health impact functions is to work with someone, 
say another BenMAP-CE user, who is familiar with the epidemiological literature and 
develop your own set of health impact functions. Reviewing the epidemiological 
literature can be time consuming, though in some situations, this might be the best 
option. For example, it would be worthwhile to develop health impact functions to 
estimate the impacts of carbon monoxide exposure, for which BenMAP-CE does not 
have pre-installed functions.  

Another option is to use the ozone and PM2.5 configurations used by EPA.  These are 
available on the BenMAP-CE website (http://www2.epa.gov/benmap/benmap-
community-edition). These functions are derived from the epidemiology literature 
described in the appendices to this user manual.  If desired you can edit this 
configuration and then save it under a different file name—it is always a good idea to 
keep the original version, so you can go back to it if needed!  

How do I edit or add other health impact functions?  

To edit or add health impact functions you need to go to Modify Datasets window 
available from the BenMAP-CE main menu.  See the health impact function section in 
Chapter 4: Loading Data for details on how to do this.  

How do I learn more about the population data in BenMAP-CE?  

Appendix J describes the population data for the United States setup in detail.  

Why did I not get results for a given geographic area that I wanted in my analysis?  

Check to see if your air quality grids mapped properly.  

Decision Point 
 
Once you generate a CFGRX file, BenMAP-CE has quantified the endpoint-specific health benefits associated 
with your Control scenario. You have completed your BenMAP-CE analysis if: 
 

3. You do not want to pool your health incidence results. For many of the health endpoints (e.g., 
mortality), BenMAP-CE contains several different health impact functions from different studies that 
you may choose to include in your configuration. Pooling refers to combining the results of two or 
more health impact functions into a single, integrated result. 

 
4. You do not want to monetize the health benefits in the valuation step. 

 
You may export your health impact results by selecting your desired aggregation level from the Aggregation for 
raw data drop-down list and clicking the Export button from the Data tab. If you also want to pool your health 
incidence results and/or monetize the health benefits, proceed to Ch. 7 "Aggregating, Pooling, and Valuing." 
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How do I determine what the Column and Row refer to in the result table?  

The Column and Row are variables designed to uniquely identify each grid cell in the 
grid definition. In the case of the U.S. County grid definition, the Column refers to the 
state FIPS code and the Row refers to the county FIPS code. One way to get a good sense 
of the Column and Row variables is to create a map (discussed in the next chapter) and 
then view where particular Column and Row variables occur in the map.  
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Chapter 7  
 

Aggregating,  
Pooling, and  

Valuing 
 
 
 
 
 
 
 

In this chapter… 
 Get an overview of valuation, discounting, and pooling.  
 Configure an Aggregation, Pooling, and Valuation (APV) file.  
 Sort and pool incidence results.  
 Learn the differences between the pooling methods. 
 Assign economic values to incidence results.  
 Aggregate incidence results and valuations.  
 Run, save, and re-open an APV configuration. 
 View and export APV results. 

 
 
 



  Chapter 7 – Aggregating, Pooling, and Valuing 

BenMAP-CE User’s Manual  March 2023 
 7-2 

This section presents an introduction to valuation, discounting, and pooling. Most 
BenMAP-CE users find this portion of the program the most complex to understand and 
use. You may find yourself referring to this chapter frequently.  

Once you have created a configuration results file with incidence results based on your 
two air quality grids (refer to Chapter 6), you can use the Aggregate, Pool, and Value 
feature to combine the incidence results and place an economic value on the combined 
results. You have two options.  

 Create a New Configuration to 
Aggregate, Pool, and Value results. 
You can create a new type of 
configuration, termed an 
Aggregation, Pooling, and Valuation 
(APV) Configuration. This allows you 
to (1) specify the geographic level at 
which you want to report your 
results, (2) specify how you might 
want to combine or "pool" the 
incidence results, and (3) specify 
how to assign an economic value to 
the health incidence results. These 
selections can be saved in an APV 
Configuration file (.apvx) and used to 
calculate results, which are stored in 
an APV Results file (.apvrx).  

 Open Existing Configuration for Aggregation, Pooling, and Valuation. You 
can load an existing APV Configuration file, edit the configuration, save it with 
the same or a different name, and then proceed to calculating the results.  

7.1  Introduction to Valuation, Discounting, and Pooling  

Valuation generally refers to placing a monetary value on estimated health incidence. In 
the example below, we discuss U.S. dollar values and provide a brief introduction to 
discounting, which has to do with placing less weight on things occurring in the future 
than on things occurring today. Finally, we discuss pooling, which has to do with 
combining comparable results.  

7.1.1 Overview of Economic Valuation  

Improvements in ambient air quality generally lower the risk of developing an adverse 
health effect by a fairly small amount across a large population. A lower risk for 
everyone means that fewer cases of the adverse health effect are expected, although we 
cannot predict which people would be spared. Therefore, the health benefits conferred 
on individuals by a reduction in pollution are actually reductions in the risk of having to 

Fundamental Concept – APVX and APVRX Files 
 
An Aggregation, Pooling, and Valuation (APV) 
Configuration file (*.apvx) stores your user-
specified BenMAP-CE preferences regarding how 
to aggregate your results, whether and how to pool 
your results, and any economic valuation functions 
you have applied. For example, an APV file might 
aggregate your estimated change in incidence to 
the U.S. county level, it might pool across multiple 
hospital admission health impact functions, and it 
could include an economic valuation function. 
 
Results derived from an APV configuration will be 
stored along with the configuration details in an 
Aggregation, Pooling, and Valuation (APV) 
Configuration Results file (*.apvrx). The results 
in this file are the aggregated, pooled, and/or 
valued results for a given scenario. 
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endure certain health problems. 
Monetizing the benefits of a 
reduction in air pollution involves 
estimating society's willingness to 
pay (WTP) for these reductions in 
risk, or the observed Cost of Illness 
(COI) for an effect, and is typically 
referred to as valuation. BenMAP-
CE uses valuation functions to 
estimate the monetized benefits of 
reducing air pollution.  

These benefits (reductions in risk) 
may vary across the population 
(and could be zero for some 
individuals). Likewise, the WTP for 
a given benefit is likely to vary 
from one individual to another. In 
theory, the total social value 
associated with the decrease in 
risk of a given health problem 
resulting from a given reduction in 
pollution concentrations is 
generally taken to be the sum of 
everyone's WTP for the benefits 
they receive.  

7.1.1.1 Monetizing Benefits 

Epidemiological studies allow us to estimate the number of cases of an adverse health 
effect that would be avoided by a given reduction in pollutant concentrations. If we 
have an estimate of the average individual's WTP for the risk reduction conferred upon 
him, we can derive from that an estimate of the value of a statistical case avoided. 
Suppose, for example, that a given reduction in pollutant concentrations results in a 
decrease in mortality risk of 1/10,000. Then for every 10,000 individuals, one 
individual would be expected to die in the absence of the reduction in pollutant 
concentrations (who would not be expected to die in the presence of the reduction in 
pollutant concentrations). If the average individual's WTP for this 1/10,000 decrease in 
mortality risk is $100, then the value of a statistical life is 10,000 × $100, or $1 million. 
In general, the ex-ante WTP for a risk reduction of x can be converted into an ex-post 
value of a statistical case avoided by dividing the average individual's WTP for the risk 
reduction of x by x (e.g. $100/0.0001 = $1,000,000). The same type of calculation can 
produce values for statistical incidences of other health endpoints.  

Sometimes those economic values come from contingent valuation studies, in which 
study participants are queried about their WTP to avoid a specific adverse health effect. 

Fundamental Concepts – Valuation 
 
Valuation Functions are used by BenMAP-CE to estimate 
the economic values of changes in the incidence of health 
effects. In the context of human health benefits assessment, 
these functions help express society's preferences for 
avoiding certain health effects as an economic value (e.g., in 
U.S. dollars).  
 
For morbidity endpoints, BenMAP-CE estimates monetized 
benefits by using either Willingness to Pay (WTP) or Cost 
of Illness (COI)-based valuation functions. WTP reflects the 
willingness of individuals to exchange money for a 
reduction in his or her risk of illness or death and is viewed 
by economists as the most complete and appropriate 
measure of the value of a risk reduction. COI estimates the 
value of a health effect based on the observed direct and 
indirect costs associated with that condition. Direct costs 
would include medical costs such as hospital stays and 
pharmaceutical costs, while indirect costs include impacts 
such as lost earnings from days unable to work.  A COI-
based estimate is expected to understate the true economic 
value of reductions in risk of a health effect because it does 
not include the value of avoided pain and suffering.  
 
For mortality endpoints, BenMAP-CE generally estimates 
monetized benefits by using the Value of Statistical Life 
(VSL), a WTP-based estimate derived from an extensive 
literature of observed or elicited estimates of the monetary 
value that an individual is willing to exchange for small 
reductions in his or her risk of death. It does NOT represent 
the value of the life of any one specified individual.  
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When estimates of WTP are not available, it can be approximated by other measures, 
most notably COI measures.  

An individual's WTP to avoid an adverse health effect will include, at a minimum, the 
amount of money he or she would have to pay for medical expenses associated with the 
illness. Because medical expenditures are to a significant extent shared by society, via 
medical insurance, Medicare, etc., the medical expenditures actually incurred by the 
individual are likely to be less than the total medical cost to society. The total value to 
society of an individual's avoidance of an adverse health effect, then, might be thought 
of as having two components: (1) the COI to society, including the total value of the 
medical resources used (some portion of which will be paid by the individual), plus the 
value of the lost productivity, as well as (2) the WTP of the individual, as well as that of 
others, to avoid the pain and suffering resulting from the illness.  

The COI approach attempts to estimate the total value of the medical resources used up 
as well as the value of the individual's time lost as a result of the illness. Because this 
method does not include the value of avoiding the pain and suffering resulting from the 
illness (a potentially large component), it is generally believed to underestimate the 
total economic value of avoiding the illness, perhaps substantially.  

The contingent valuation method (and conjoint analysis) attempts to elicit from people 
what they would be willing to pay (WTP) to avoid the illness. Because of the distortion 
in the market for medical goods and services, whereby individuals generally do not pay 
the full value of the medical care, this method too is likely to understate the total 
economic value of avoiding the illness.  

Although the COI and WTP are the two most common methods, other methods have 
been used in certain circumstances. The method the benefit analyst chooses to value a 
particular health endpoint will depend in part on what data are available. The unit 
values currently available for use in BenMAP-CE are data or estimates that have been 
collected or generated by researchers and can be readily obtained in publicly available 
databases or in the open literature. When reviewing the economic literature to 
determine the appropriate valuation functions to use, it is important to have an 
economist assist. 

7.1.1.2  Valuing Reductions in Premature Mortality  

The economics literature discussing the value of changes in fatality risks is extensive 
and provides a basis for monetizing benefits when the number of deaths avoided as a 
result of an air quality improvement can be calculated, but the literature on certain 
issues regarding the appropriate method for valuing reductions in premature mortality 
risk is still developing. Issues such as the appropriate discount rate and whether there 
are factors, such as age or the quality of life, that should be taken into consideration 
when estimating the value of avoided premature mortality are still under discussion. 
BenMAP-CE currently offers a variety of options reflecting the uncertainty surrounding 
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the unit value for premature mortality. See the Appendices H and I for more detail on 
the valuation functions available in BenMAP-CE.  

Monetary estimates of changes in premature mortality risk are often expressed in terms 
of the Value of a Statistical Life (VSL). This term is easily misinterpreted and should be 
carefully described when used in benefit analysis. VSL is the aggregate dollar amount 
that a large group of people would be willing to pay for a reduction in their individual 
risks of dying in a year, such that we would expect one fewer death among the group 
during that year on average. The basic assumption underlying the VSL approach is that 
equal increments in fatality risks are valued equally. For similar reasons, the VSL 
approach is only appropriate for marginal changes in the risk of death and should not 
be used to value more significant changes. Because changes in individual fatality risks 
resulting from environmental regulation are typically very small, the VSL approach is 
usually acceptable for these types of benefit analyses.  

The U.S. EPA National Center for Environmental Economics provides answers to 
frequently asked questions regarding the economic value of mortality risk on its 
website: https://www.epa.gov/environmental-economics/mortality-risk-valuation. 
You may wish to consult this site as you have questions regarding how U.S. EPA derives 
VSL and applies it in an environmental benefits analysis.  

7.1.2  Overview of Discounting  

What is discounting?  

In general, people prefer current consumption to 
future consumption. In other words, a $1 today is 
worth more today than a $1 tomorrow is worth 
today, and that dollar continues to decrease in 
value as you go further out into the future. (This 
concept is also referred to as the social rate of 
time preference or the time value of money. This 
is a different concept than inflation, which is a 
general increase in the price level of goods and 
services.) Discounting is the process of converting 
that future dollar into a value that can be 
compared to the value of a dollar today. The 
discount rate expresses this process in 
quantitative terms. The higher the discount rate, 
the faster value decreases over time. For example, $1 twenty years from now is worth 
$0.55 today at a 3% annual discount rate, but worth only $0.26 at a 7% annual discount 
rate.  

A basic discounting function is as follows:  

Present Value = Future Value / (1+r)t 

Fundamental Concept – Discounting / 
Discount Rate 
 
In a cost-benefit analysis, discounting 
accounts for the fact that people value 
benefits that occur in the future less than 
benefits received today. The rate at which 
individuals discount the value of those 
benefits is the discount rate. Typically, if 
a benefit is expected to be realized as a 
stream of benefits over multiple years, as 
is often assumed for mortality risk 
reductions, the economic value of that 
benefit stream would be discounted back 
to the starting year of analysis and 
summed as a Net Present Value of 
benefits. 
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where r is the discount rate and t is the time period (usually years).  

Example: $1 twenty years from now at a 3% annual discount rate is worth $0.55 today  

Present Value = $1.00 / (1 + 0.03)20 = 1 / (1.03)20 = 1 / 1.806111 = 0.553676 = $0.55 

Why do we discount benefits?  

The benefits of reductions in air pollution may need to be discounted for three key 
reasons:  

1.  Today's society values benefits that occur today more highly than benefits that will 
occur in the future. Therefore, we must discount in order to compare those future 
benefits with current benefits.  

2. For a cost-benefit analysis, benefits estimates in a future year need to be 
comparable to the cost estimates for that same year (which are also discounted).  

3.  Discounting can be used to compare the future streams of benefits and costs. The 
core BenMAP-CE program estimates changes in adverse health effects based on 
changes in air quality for one specified analysis year, even though certain health 
benefits may occur after the analysis year.24 Discounting can be used to compare the 
future benefits with benefits occurring during the analysis year. 

Under which scenarios would I need to discount benefits?  

Health benefits may occur three different ways after the analysis year specified in 
BenMAP-CE.  

1.  Certain health endpoints accrue medical expenses or lost earnings for multiple 
years. The future medical expenses would need to be discounted to compare with 
expenses occurring in the analysis year.  

2.  Pollution exposure and the resulting health effects do not occur within the same 
year (a.k.a. a cession lag). The monetized benefits of future health effects would 
need to be discounted to compare with the benefits of health effects that occur 
during the analysis year.  

3. In some analyses, you may want to estimate a stream of benefits occurring over 
multiple analysis years instead of just one analysis year. In this scenario, you would 
need to discount the future benefits occurring in each year analyzed back to the 
present year in order to present the cumulative total estimate of benefits (i.e., the 
net present value of a stream of benefits). 

 
24 The PopSim tool estimates the change in population mortality risk over a multi-year period, but it is not yet 
possible to estimate the economic value of these impacts in BenMAP-CE.   
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When would we not discount benefits?  

In many instances, it is not necessary to discount the benefits estimates generated by 
BenMAP-CE. If the health effect and the monetized value of all the medical expenses, 
lost earnings, and suffering occur entirely in the analysis year, then you may not need to 
discount your benefits. For example, school loss days occur within the analysis year, 
and all monetized expenses occur within the analysis year. It is important that you 
understand the assumptions within the health and valuation functions before you 
decide whether you need to discount. (If your analysis year for your benefits estimates 
does not match the analysis year for your costs estimates, you may need to discount in 
order to compare your benefits with your costs even if you meet the criteria listed 
above.) 

Which discount rate should I choose?  

Selecting a discount rate is challenging and is one of the most contentious 
methodological issues encountered in economic analyses of environmental policies. 
Because environmental regulations frequently have differing streams of costs and 
benefits over time, the selected discount rate may determine whether the benefits of a 
regulatory action exceed the costs. In addition, selecting a higher discount rate may 
result in a smaller benefits estimate because the future benefits are worth much less 
than they would be if a lower discount rate was selected. For benefits that occur well 
into the future, the issue of intergenerational equity further complicates the selection of 
the discount rate. (In the context of environmental policy, intergenerational equity 
refers to the fairness of the distribution of the costs and benefits of a long-lived policy 
when those costs and benefits are borne by different generations. Most criteria 
pollutants are not considered to have intergenerational equity issues, but the issue 
frequently arises in analyses of climate and mercury.)  

There are various economic arguments in support of and in opposition to various 
discount rates. To comply with OMB and EPA's recommendations, EPA currently uses 
discount rates of 3% and 7% for benefit analyses.  For more details, see EPA [1999; 
2000] listed in Chapter 1, Section 1.7 (Sources for More Information). 

Which health endpoints accrue medical expenses or lost earnings for multiple years, and 
how do I discount them?  

BenMAP-CE includes health and valuation functions for several chronic health effects, 
including PM2.5-related chronic bronchitis and non-fatal acute myocardial infarctions 
(AMIs, or heart attacks).  

 Chronic bronchitis is assumed to last from the initial onset of the illness 
throughout the rest of the individual's life. BenMAP-CE currently includes one 
WTP function as well as two COI functions representing the two discount rates 
for chronic bronchitis.  



  Chapter 7 – Aggregating, Pooling, and Valuing 

BenMAP-CE User’s Manual  March 2023 
 7-8 

 Technically, AMIs are discrete, acute events, not chronic conditions. However, 
heart attacks cause chronic follow-up health effects that accrue medical 
expenses over time, similar to chronic conditions. You can discount the economic 
value of these chronic effects through the valuation function in BenMAP-CE. 
AMIs are assumed to accrue costs over five years. Although WTP functions for 
AMIs are not available, BenMAP-CE currently includes several COI functions that 
incorporate the direct medical costs and the opportunity cost (lost earnings) for 
specific age groups at two discount rates.  

See Appendix G for details on the discounting assumptions within the valuation 
functions. 

Should I discount the health incidence as well as the valuation?  

You should not discount the health incidence for any of the scenarios mentioned above. 
Changes in the lag assumptions do not change the total number of estimated deaths, for 
example, but rather the timing of those deaths. If you discounted the health incidence 
along with valuation, you would essentially be discounting twice.   

Which health endpoints do not occur in the same year as exposure?  

In many cases, the health effect from exposure to air pollution occurs shortly after 
exposure, but there can be a significant lag between exposure and the health effect. The 
cession lag can be a matter of hours or days, but some health effects may lag exposure 
by much longer. If exposure and the health effect do not occur within the same year, it is 
necessary to discount those benefits back to the analysis year. The only PM2.5 health 
function currently in BenMAP-CE that falls into this category is PM2.5-related premature 
mortality. Discounting PM-related premature mortality is controversial because the lag 
structure is unknown, but scientific literature on similar adverse health effects and new 
intervention studies suggest that premature mortality probably would not occur in the 
same year as the exposure. (See: Roosli M, Kunzli N, Braun-Fahrlander C, Egger M. 2005. 
"Years of life lost attributable to air pollution in Switzerland: dynamic exposure- 
response model." International Journal of Epidemiology 34[5]:1029-35.) VSL valuation 
functions in BenMAP-CE incorporate cessation lags using both 3% and 7% discount 
rates. 

EPA's Science Advisory Board recommends future research to support the development 
of defensible lag structures and provided a lag structure that could be assumed until 
additional research has been completed. See Chapter 5 of the PM Regulatory Impact 
Analysis for more detail on assumed lag structures for PM2.5-related premature 
mortality (http://www.epa.gov/ttn/ecas/regdata/RIAs/finalria.pdf). Some example lag 
structures from the PM RIA are shown in Figures 7-1 and 7-2 below. Currently, 
BenMAP-CE does not have the capability to do this type of discounting, so you must 
discount outside of BenMAP-CE.  
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Note: Discounting is not necessary for short-term ozone-related premature mortality 
because it occurs within the analysis year. However, discounting is necessary for 
premature mortality associated with long-term ozone exposure.  

Figure 7-1. Graphical representation of assumed lag structures  
analyzed in EPA's PM RIA as sensitivity analyses 

Figure 7-2. Graphical representation of cumulative assumed lag  
structures analyzed in EPA's PM RIA as sensitivity analyses 
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7.1.3  Overview of Pooling  

For many of the health endpoints (e.g., 
respiratory hospital admissions), BenMAP-CE 
contains many different functions from different 
studies that you could choose to include in your 
configuration. Combining data from several 
comparable studies in order to analyze them 
together is often referred to as meta-analysis. 
For a number of reasons, it is often impractical or 
impossible to combine the original data sets. 
Combining the results of studies provides a 
second-best way to synthesize information. This 
is referred to as pooling.  

BenMAP-CE allows users to pool the estimated 
incidence changes predicted by several studies 
for the same pollutant-health endpoint group 
combination (e.g., PM2.5-related cardiovascular 
hospital admissions). It also allows the pooling of 
the corresponding study-specific estimates of 
monetary benefits.  

Why would you want to pool results? 

There are two good reasons to pool across study results, one practical and one 
methodological. Pooling allows you to 

 Combine or aggregate multiple study 
estimates into a single estimate. This 
combined estimate is easier to report. 

 Certain types of pooling—including 
random effects techniques—account 
for heterogeneity in the risk estimates 
reported in the epidemiological 
literature used to construct the health 
impact functions you used to calculate 
incidence. 

However, as we discuss below, pooling may 
not be such a good option if 

 You don’t know a great deal about the studies used to quantify health impacts; 
you’ll need to know a lot about epidemiological studies used to construct the 
health impact functions in order to pool properly.  

Fundamental Concept - Pooling 
 
Pooling refers to the methods of 
combining of different sets of results 
generated by multiple health impact 
functions or valuation functions.  For 
example, BenMAP-CE allows you to pool 
the estimated incidence changes 
predicted by several health impact 
functions for the same pollutant-health 
endpoint group combination (e.g., PM2.5-
related cardiovascular hospital 
admissions) so that you can present a 
single value integrating the information 
generated by all those functions. BenMAP 
also allows you to pool the economic 
benefits estimates, e.g. to generate an 
average valuation from two different 
studies for ED visits for asthma.   
 
BenMAP-CE includes several pooling 
methods, which are described in more 
detail below and in Appendix K.  
 

Decision Point - Pooling 
 
When might you want to pool your health impact 
estimates? 
 
• You have multiple studies of the same health 

endpoint in the same population group and 
wish to report a single estimate reflecting 
the contributions of all the studies. 

• You have multiple studies of different (non-
overlapping) health endpoints in the same 
population group that you want to combine 
to simplify reporting of results (useful for 
HAs or ED visits).  

• You have multiple studies of partially 
overlapping health endpoints and want to 
isolate the estimate of a specific health 
endpoint that appears in one HIF but not the 
other (via subtraction).  
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 You think it is important to convey the variability across incidence estimates for 
a given health endpoint.  

BenMAP-CE allows you to pool in five different ways: 

 Addition 

 Subtraction 

 User-assigned weights 

 Random Effects 

 Fixed Effect. 

The examples that follow demonstrate each of 
these methods (Fixed and Random Effects are 
combined in one example.) In each of the 
examples below, the distribution of estimated 
health impacts are represented by a normally 
distributed probability density function (PDF) 
shaped as a bell curve. In each PDF, the mean 
health impact estimate is represented by a 
dashed line. While we illustrate these examples using a normally distributed PDF for 
ease of presentation, BenMAP-CE can accommodate several other types of distributions 
(e.g. Weibull, Triangular).  

BenMAP-CE Use Example 
 
Example scenarios for pooling health impact 
estimates: 
 
• You ran two different HIFs for HA, All 

Cardiovascular for ages 65-99. They 
report different risk estimates and 
standard errors, and you’d like to combine 
them into a single estimate. 

• You ran an HA, Ischemic Heart Disease HIF 
for ages 65-99 and an HA, Dysrhythmia 
HIF for ages 65-99 and want to combine 
the results into a single value for HA, 
cardiovascular outcomes. 

• You ran an HA, All Cardiovascular HIF for 
ages 65-99 and an HA, All Cardiovascular, 
less stroke HIF for ages 65-99 and want to 
use the two functions to estimate the 
number of stroke-related HAS. 
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Example 1: Pooling by Addition 

You might want to use the Pooling by Addition option if you would like to aggregate two 
outcomes that are non-overlapping. In the example below, we have estimated ischemic 
heart disease hospital admissions and dysrhythmia hospital admissions. You’ll see that 
each endpoint is associated with unique, and non-overlapping, International 
Classification of Disease 9th edition (ICD-9) code (Slee 1978). Therefore, it’s ok to add 
the two estimates, because doing so would not double-count impacts.  
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Example 2: Pooling by Subtraction 
 
In this example, suppose that you have estimated the incidence of total cardiovascular 
hospital admissions using one health impact function. Suppose also that you estimated 
the incidence of total cardiovascular hospital admissions, less stroke. In this instance, 
you could subtract the second incidence estimate from the first incidence estimate to 
yield the number of stroke hospital admissions.  
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Example 3: Pooling with User-Assigned Weights 
 

In this case, you might have estimated the change in incidence using two different 
health impact functions for the same health endpoint and would like to combine them 
using weights that you specify.  
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Example 4: Pooling Using the Fixed Effect and Random Effects 
 
The Fixed Effect and Random Effects pooling techniques are among the most 
complicated and are best applied only when you understand clearly the assumptions 
inherent in the method and its suitability to the incidence estimates. The example below 
describes the procedure for performing this technique. 
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Table 7-1 summarizes the different types of pooling approaches, and Appendix I 
provides a detailed discussion of the approaches. Note that some pooling methods are 
only available in Monte Carlo mode. This is because these pooling methods attempt to 
combine distributions of results into new distributions, and no distributional 
information is available in Point Mode. The Pooling Method column will thus have 
different values in its drop-down list depending on the mode used to generate the 
incidence results being pooled. 

Table 7-1. Pooling Approaches for Incidence and Valuation Results  

Pooling 
Approach Description of Pooling Approach 

Availability 
Point 
Mode 

Monte 
Carlo 

None No pooling performed. Yes Yes 
Sum 
(Dependent) 

Results are summed assuming they are perfectly 
correlated. In Point Mode, this is just a simple sum. In 
Monte Carlo mode, BenMAP-CE chooses the first point 
from each result in the pooling and does a simple sum 
to generate the first point in the pooled result, and so 
on for all of the points in the distribution of results. 

Yes Yes 

Sum 
(Independent) 

Results are summed assuming that they are 
independent. A Monte Carlo simulation is used. At each 
iteration, a random point is chosen from the 
distribution for each result, and the sum of these 
values is put in a holding container. After some 
number of iterations, the holding container is sorted 
low to high and binned down to the appropriate 
number of percentile points. 

No Yes 
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Pooling 
Approach Description of Pooling Approach 

Availability 
Point 
Mode 

Monte 
Carlo 

Subtraction 
(Dependent) 

Results are subtracted assuming they are perfectly 
correlated. All subsequent results are subtracted from 
the first result (the highest result in the display - to 
reorder results, simply click and hold a result and then 
drag it to its new position). In Point Mode, this is a 
simple subtraction. In Monte Carlo mode, BenMAP-CE 
chooses the first point from each result in the pooling 
and does a simple subtraction to generate the first 
point in the pooled result, and so on for all of the 
points in the distribution of results. 

Yes Yes 

Subtraction  
(Independent) 

Results are subtracted assuming that they are 
independent. A Monte Carlo simulation is used. At each 
iteration, a random point is chosen from the 
distribution for the first result, and then random 
points are chosen from the distribution for each 
subsequent result and subtracted from the first. The 
result is put into a holding container. After some 
number of iterations, the holding container is sorted 
low to high and binned down to the appropriate 
number of percentile points. 

No Yes 

User defined 
Weights 

Weights are specified by the user. In Point Mode, the 
new result is generated by a simple weighted sum of 
the input results. In Monte Carlo mode, the results are 
combined using the user specified weights with the 
‘Round Weights to Two Digits’ Advanced Pooling 
Method. Note that the weights you enter need not add 
up to one - BenMAP-CE will normalize them internally. 
Also note that BenMAP-CE initializes all the weights to 
1/n, where n is the number of results being pooled.  

Yes Yes 

 

7.2  Create Aggregation, Pooling, and Valuation (APV) Configuration  

Once you have run a configuration result file (see Chapter 6), you can begin creating 
your APV configuration. You will start with selecting the aggregation levels for 
incidence and valuation results, then move on to pooling and valuation. These 
processes are described in detail below. 

7.2.1  Selecting Aggregation Levels 

Double-clicking Aggregation from the BenMAP-CE tree menu item opens the window 
which lets you choose the level of aggregation for the incidence and valuation results. 
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7.2.2  Pooling Incidence Results  

To begin pooling incidence results, double-click Pooling Method from the BenMAP-CE 
tree menu. In the top half of the Select and Pool Incidence Estimates window, you 
will find a list of Available Incidence Results. The results are represented by the 
health impact functions from which they were created. You may click on the Select 
study fields button to display additional information about each health impact 
function. This is recommended when using the geographic areas functionality (i.e., 
applying region-specific air pollution effect coefficients). 

 
There are several steps to pooling your incidence results:  
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Step 1. Add incidence results to the pooling window  

Using the available incidence results, you can drag individual incidence results to the 
pooling window, or select the result(s) using the checkboxes next to each study, and 
click Add to Pooling Window to move them to the pooling window. You do not have to 
add all of your incidence results to the pooling window, but note that only those results 
showing in the pooling window will be 
included in the pooled incidence or 
valuation results. As with health impact 
functions, in Chapter 6, there is a filter 
method below the Available Incidences 
Results for your convenience. 

The bottom half of the pooling window 
consists of one or more tabs, each with an 
associated “pooling window”, where health 
impact functions can be added and 
specifications for how to pool them (if any) can be made.  In version 1.5, by default, 
BenMAP-CE will automatically create a pooling window for each Endpoint Group for 
which one or more Health Impact Functions were selected in the Health Impact 
Function selection screen, and the Endpoint Group will be indicated on the tab. For 
example, there could be one pooling window for Mortality and one for Asthma 
Exacerbation.  Health impact functions should be added to the pooling window 
corresponding to that function’s Endpoint Group.  Additional pooling windows can be 
added if needed, as discussed below. 

Incidence results are displayed in the 
pooling window in a tree structure 
determined by (1) the order of the 
columns, and (2) the values of the 
identifying variables of the Health 
Impact Functions from which the 
incidence results were generated 
(Endpoint Group, Endpoint, etc.). 

 

 

BenMAP-CE Best Practices 
 
Incidence results must be added to the pooling 
window in order to be included in the 
valuation step, whether or not you intend to 
pool them with other incidence results. If you 
would like to apply a valuation function to a 
single (unpooled) health incidence estimate, 
add the health incidence estimate to the 
pooling window and specify the Pooling 
Method as “None.” 
 

BenMAP-CE Guidance and Best Practices 
 

BenMAP-CE automatically generates a pooling window 
(i.e., tab) for each unique Endpoint Group present in 
your health incidence results. 
 
Generally, you should add health impact functions to the 
pooling window corresponding to that function’s 
Endpoint Group. For example, you would likely want to 
add health incidence results for Mortality, Respiratory to 
the “Mortality” pooling window. 
 
You may need multiple pooling windows for the same 
Endpoint Group if you want to pool and/or value the 
same incidence results in different ways. For example, 
you might have age-stratified incidence results and want 
to calculate age-specific pooled results as well as a pooled 
result across all ages. In this case, you would need to set 
up two pooling windows for the same Endpoint Group. 
You may use as many pooling windows as you need in 
your analysis; you should give each pooling window a 
unique name. See Step 4 for more information on adding 
pooling windows. 
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Each line in the pooling window represents a node in the tree structure, with each node 
representing either an individual incidence result or a collection of incidence results 
which have common values for their leftmost identifying variables. The tree structure is 
generated by comparing the leftmost values of the incidence result's identifying 
variables. High level nodes in the tree are formed when results have common values for 
identifying variables, and branches in the tree occur when the values differ. 
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In the above example, four incidence results have been dragged into the pooling 
window. Each of the four health impact functions has Endpoint Group ‘Asthma 
Exacerbation’. Thus, the top line, or root of the tree structure, represents all four 
incidence results. A branch then occurs in the tree structure, because two studies have 
Endpoint ‘Asthma Exacerbation, Cough’, while two others have Endpoint ‘Asthma 
Exacerbation, Wheeze’ and ‘Endpoint Asthma Exacerbation, Shortness of Breath’. A 
further branch occurs within Endpoint ‘Asthma Exacerbation, Cough’ when Author of 
the two incidence results differs. Once a node has only a single incidence result, no 
further branching can occur.  

Step 2. Sort results  

After dragging incidence results into the pooling window, you can rearrange the order 
of the columns (variables), and thus change the tree structure. To do this, click on a 
column and hold the button down as you drag it to its new location. Note that the 
Pooling Method is always the first column after the Studies, By Endpoint column. All 
the other columns can be moved. To see how the order of the columns in the pooling 
window affects the tree structure, consider the following example: 
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This example uses exactly the 
same incidence results as the 
previous example, but with the 
Author column (variable) 
immediately after the Pooling 
Method and Nickname columns. 
Note that the Pooling Levels 
drop-down is set to 1 because 
one criterion (Author) is used to 
group studies for pooling. 
Multiple criteria (e.g., Endpoint 
and Author) may be used to 
group studies for pooling if 
desired.  

Step 3. Select pooling methods  

Once the tree structure is set up in the pooling window, you are ready to select your 
pooling methods. Essentially each Pooling Method involves a different method of 
combining input incidence results to generate new incidence results. Results can be 
pooled any time a branch occurs in the tree structure — that is, any time two or more 
results share common values for their leftmost variables. BenMAP-CE helps you to 
identify these spots by inserting a value of None in the Pooling Method column at each 
spot where pooling is possible. These spots may change depending on the ordering of 
the columns and the selected number of Pooling Levels. 

BenMAP-CE Guidance and Best Practices 
 
Once you have added health impact results to a pooling window, 
your pooling tree structure is determined by: 
 
(1) the number of Pooling Levels selected (up to 3), which 
determines the number of criteria used to group studies for 
pooling,  
(2) the order of the Pooling Level columns in the pooling 
window, and  
(3) the values of the relevant Pooling Level meta-data of the 
Health Impact Functions from which the incidence results were 
generated (Endpoint Group, Endpoint, etc.).  
 
You may alter your pooling tree structure by modifying (1) using 
the drop-down menu and (2) by dragging and dropping the 
Pooling Level into the desired grouping hierarchy.  
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When a row that represents a group of incidence results is selected, an arrow appears 
at the right of the Pooling Method column, indicating the availability of a drop-down 
menu where you can select the desired Pooling Method. If you select User Defined 
Weights from the Pooling Method menu, a Weight column will appear to the right of 
the Pooling Method menu. All studies are assigned equal weight by default unless you 
update them. The sum of all User Defined Weights must equal 1. 

If a Pooling Method is selected, you can view the calculated weights before executing 
the pooling by pressing the Preview button. In the case of the Random or Fixed 
Effects pooling method, the Preview button will reveal whether random or fixed 
effects are being applied. 

Step 4. Create additional pooling windows if needed  

Within a given pooling window, you can have only one ordering of the columns 
(variables). As we have seen, however, the ordering of the columns determines the 
structure of the tree used to pool results. It may thus sometimes be necessary for 
analyses to have multiple tree structures to handle the various pooling trees they 
require. To facilitate this, BenMAP allows additional pooling windows to be added and 
deleted.  The pooling windows are displayed in a tabbed format.  

To open a new pooling window, simply click on the rightmost tab marked with +. You 
may do this as many times as needed to accommodate different sort orders. You can 
add the same incidence results to as many different pooling windows as you like.  

As needed, you can also delete a pooling window by clicking on the window you wish to 
delete and clicking the x to the right of the tab name. 
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Example: Simple Sorting & Pooling  

If you add a single incidence result to the pooling window, you will see just one line, and 
therefore no opportunities to pool. This is shown in the example below: 

 
If you add a second incidence result to the window whose health impact function has 
the same Endpoint Group, but a different Author, you will then have a tree with two 
items in it. The tree branches at the point where the two health impact functions vary - 
at the Author column. 

 
Note that a pooling method can now be selected for the two incidence results, since a 
branch has appeared. If we desired to pool these two incidence results, we would end 
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up with a pooled result representing two ‘Asthma Exacerbation, Shortness of Breath’ 
incidence results.  

If you now add two more incidence results to the window whose health impact 
functions have the same Endpoint Group but different Endpoints, you will see the 
following: 

 
Now you have many pooling options. Setting aside the issue of which pooling method to 
choose, there are four different pooling options at this point (including doing nothing), 
since we have two places where we can choose to pool or not to pool.  

If you choose to pool at the Studies, By Endpoint corresponding to Endpoint ‘Asthma 
Exacerbation, Shortness of Breath’ you would end up with three results (one pooled and 
two unpooled) instead of four individual incidence results. 

 
 

If you choose to pool at the Studies, By Endpoint for the Endpoint Group ‘Asthma 
Exacerbation’ (where the Pooling Method field says ‘None’ in the above image), you 
will end up with a single result representing all four of the original incidence results. 
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If you pool at both spots:  

 First, the ‘Asthma Exacerbation, Shortness of Breath’ results are pooled to a give a 
single ‘Asthma Exacerbation, Shortness of Breath’ result.  

 Next, the three separate Endpoint results are pooled to give a single ‘Asthma 
Exacerbation’ result. 

 

 
These same principles apply no matter how many incidence results are being pooled, 
and regardless of which pooling methods are selected.  

Example: Multiple Pooling Windows  

There are many different ways to pool your incidence results. Sometimes you may want 
to look at the same results in different ways, or you may just have many results that 
need to be sorted by different variables. In these cases, you can open up multiple 
pooling windows by clicking on the rightmost + tab. 

For example, you might want to pool all results of health impact functions by a 
particular Author, rather than pooling all results of health impact functions of a 
particular Endpoint. The examples below show the same set of incidence results, first 
sorted by Author, then sorted by Endpoint. In order to change the sorting levels of the 
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health impact functions, move the first category on which you wish to sort to the first 
position after the Pooling Method column. In this example, you would drag the Author 
column ahead of Endpoint column. As you can see, after this change the pooling options 
are very different. 

Sorted by Author: 

 

Sorted by Endpoint: 

 
 

If you use two different pooling windows, each sorted as shown above, you can create 
results pooled by Author, and results pooled by Endpoint.  

7.2.3  Valuing Pooled Incidence Results  

After you have specified your incidence 
pooling options, click on the Next button 
and BenMAP-CE will show a Pooling 
Preview. Review and Close the Pooling 
Preview in order to select valuations and 
valuation pooling options from the Select 
Valuation Methods, Pooling and 
Aggregation window.  

BenMAP-CE Decision Point 
 
When might you want to pool your valuation 
estimates? 
• You have multiple valuation functions 

(likely derived from different studies) for 
the same health endpoint that you would 
like to average. 

• For a given endpoint, there are age-specific 
valuation functions for non-overlapping age 
groups that you would like to sum to obtain 
a total valuation estimate. 
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The Select Valuation Methods, Pooling and Aggregation window should look quite 
similar to the Select and Pool Incidence Estimates window, with tree views on the 
top half representing the valuation methods available, and various pooling windows on 
the lower half representing the selected valuations and pooling options.  

For each pooling window you created on 
the Select and Pool Incidence Estimates 
window, there is a corresponding pooling 
window in the Select Valuation Methods, 
Pooling, and Aggregation window. You 
will notice that the number of incidence 
estimates available in the valuation 
pooling window will reflect any pooling 
choices you made in the Incidence 
Pooling and Aggregation window. For 
example, if in the Select and Pool 

Incidence Estimates window you pooled 5 incidence estimates into a single incidence 
estimate, you will see a single incidence estimate in the Valuation Methods Pooling 
and Aggregation window.  

The columns present in the Select Valuation Methods, Pooling, and Aggregation 
window are determined by the incidence results left after all incidence pooling has 
occurred. There will be exactly enough columns in each pooling window to represent 
the “least” pooled incidence result. That is, the columns will be in the same order they 
were in the Select and Pool Incidence Estimates window, but the only columns 

BenMAP-CE Use Example 
 
Example scenarios for pooling valuation estimates: 
• You have two valuation functions derived from 

different studies for Emergency Room Visits, 
Asthma that you would like to average using 
equal or user-specified weights. 

• You have multiple age-specific valuation 
functions for Acute Myocardial Infarction (for 
age groups 0-24, 25-44, 45-54, 55-64, and 65-
99) that you would like to combine into a single 
valuation estimate for ages 0-99. 
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present will be those up to the level of the pooled incidence result with the most 
columns left over after all pooling has occurred. Here is an example: 

 
There are several steps to take in the Select Valuation Methods, Pooling, and 
Aggregation window: 

Step 1. Select your valuation methods  

Valuation Methods are specific to Endpoint Groups, and sometimes to Endpoints as 
well. The only Valuation Methods which appear on the top half of the window are 
those which have the same Endpoint Group values as the pooled incidence results 
which are available to be valued. To select a Valuation Method, select it from the table 
and drag-and-drop it onto the appropriate incidence result in the pooling window 
below. Note that BenMAP-CE will only 
allow you to drop Valuation Methods 
onto incidence results which have the 
same Endpoint Group value. For 
example, BenMAP-CE will not allow 
you to drop a ‘Mortality’ valuation on a 
‘Hospital Admissions’ incidence result. 
Note also that you can only drag-and-
drop individual Valuation Methods, 
not entire groups of them. For 
explanations of the various valuation 
methods, see Appendix G.  

BenMAP-CE Guidance and Best Practices 
 
When selecting Valuation Methods for your analysis, it 
is important to match the valuation function to the 
health incidence estimate as closely as possible. For 
example, if the health endpoint is Asthma Symptoms, 
Albuterol use, then the valuation function should 
correspond specifically to albuterol use rather than 
other asthma symptoms such as cough or wheeze.  
 
For long-term health impacts, the valuation function 
may also account for your preferred time span of 
analysis and discount rate.   
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If you have added any of your own valuation methods, as described in the Valuation 
Data section of Chapter 4: Loading Data, you can drag-and-drop them in the same way 
as the EPA Standard Valuation Functions shown in these examples. 

 
When BenMAP-CE runs the APV Configuration, it will generate a valuation result for 
each Valuation Method you select by running the method’s Function on the selected 
incidence results. You do not need to select a Valuation Method for every incidence 
result—incidence results without any Valuation Methods will simply be ignored when 
valuation results are generated, aggregated, and pooled.  

Because valuation functions include an uncertainty distribution around them, 
generating valuation results is fairly complicated. The procedure depends on whether 
the incidence results being used were generated in Point Mode or with the default 
Monte Carlo method. See Chapter 6: Incidence Estimation (Section 6.2.3) for details on 
these advanced configuration settings.  

In Point Mode, BenMAP-CE simply runs the valuation functions once using the point 
estimate of the incidence result and the mean of the valuation function as inputs.  

With the Monte Carlo feature, on the other hand, BenMAP-CE generates one hundred 
percentile points (from the 0.5th percentile to the 99.5th percentile) to represent the 
distribution of the inputs to the valuation function. To get the value of the health 
incidence, BenMAP-CE multiplies each combination of values from the incidence result 
with each of the hundred valuation points, and puts the results into a holding container. 
(For example, if the incidence result has 10 percentile points and there are 100 



  Chapter 7 – Aggregating, Pooling, and Valuing 

BenMAP-CE User’s Manual  March 2023 
 7-32 

valuation points, then the holding container will have 1,000 values.) Finally, the holding 
container is sorted low to high and binned back down to 100 percentile points 
(representing the 0.5th percentile to the 99.5th percentile of the economic value of the 
incidence).  

Step 2. Sort results  

Depending on how your incidence results were pooled, the columns in the valuation 
pooling windows can be resorted in the same way as the Select and Pool Incidence 
Estimates window columns. This resorting will have the same sort of impact on the 
tree structure of valuation results that it had on the tree structure of incidence results. 
(See Step 2 in the section on Pooling Incidence Results.)  

Step 3. Select pooling methods  

The same pooling methods are available for valuation results which were available for 
incidence results. (See Step 2 in the section on Pooling Incidence Results.) You should 
note that when more than one valuation method is selected for a particular pooled 
incidence result, it is possible to pool the generated valuation results. 

 
Step 4. Select Variable Dataset  

Before proceeding to the next step, you have the option to select a Variable Dataset 
from the drop-down menu beneath the pooling window (this is not required to proceed 
to the next step). The Variable Dataset can include a variety of data, such as income 
and poverty data that might be used in health or valuation functions. For the default 
EPA health and valuation functions, you just need to select the EPA Standard Variables.  

If you have developed your own setup, then you have the option to load and use a 
Variable Dataset. This is not necessary if you do not need the extra variables that can 
be included in this dataset. 
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7.2.4 APV Configuration Advanced Settings  

When specifying the incidence pooling options, you may click on the Advanced button 
on the bottom of the Select and Pool Incidence Estimates window. This button will 
open the Advanced Pooling Settings window. The features of this window are 
described in the next section.  
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7.2.4.1  Aggregation and Pooling 

Default Advanced Pooling Method  

The relative contribution of any one study in the pooling process depends on the weight 
assigned to that study. A key component of the pooling process, then, is the 
determination of the weight given to each study. BenMAP-CE lets users assign 
“subjective” weights and it assigns weights using a fixed effects or a random effects 
approach. There are three options for using weights available in the Default Advanced 
Pooling Method drop-down list:  

Round weights to two digits. BenMAP-CE rounds each weight to two digits (e.g. 0.73), 
and then multiplies these weights by 100 to get two-digit integers. Each entire 
distribution (set of percentile points) is then put into a holding container an integral 
number of times, according to its integral weight. This holding container is then 
sorted low to high and binned down to the appropriate number of percentile points.  

Round weights to three digits. BenMAP-CE rounds each weight to three digits (e.g. 
0.732), and then multiplies these weights by 1,000 to get three-digit integers. Each 
distribution (set of percentile points) is then put into a holding container for an 
integral number of times, according to its integral weight. This holding container is 
then sorted low to high and binned down to the appropriate number of percentile 
points.  

Use exact weights for Monte Carlo. BenMAP-CE uses exact weights and a Monte Carlo 
simulation. During each iteration of the procedure, a particular result is selected 
with a probability equal to its weight. Once a result is selected, one of its percentile 
points is chosen at random and put into a holding container. This is done some 
number of times (see Monte Carlo Iterations, below), and the holding container is 
then sorted low to high and binned down to the appropriate number of percentile 
points. 

Default Monte Carlo Iterations  

This drop-down list is only enabled when Use exact weights for Monte Carlo is selected 
as the Default Advanced Pooling Method. It specifies the number of iterations the 
Monte Carlo simulation should be run (see above). Its initial value is set by the Default 
Monte Carlo Iterations value from the Advanced Pooling Settings window (see Step 
1, above).  

Random Seed  

The Advanced Pooling Settings window allows the specification of a Random Seed. 
Many of the pooling methods require the generation of sequences of random numbers, 
e.g. choosing a random percentile point during a Monte Carlo simulation. Providing a 
specific Random Seed value allows you to ensure that the same sequence of random 
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numbers is generated as in a previous analysis, thus allowing exact results to be 
reproduced.  

If you do not set the Random Seed for a particular run, one will be generated 
automatically from the system clock (the number generated will depend on the date 
and time, and should change every minute). Normally, you should not set the Random 
Seed value. If you need to reproduce a specific set of results, however, the random seed 
used to generate previous APV Configuration Results can be determined from an APV 
Configuration Result file (.apvrx) Audit Trail Report.  

Sort Incidence Results  

The Sort Incidence Results should generally be always checked. This setting ensures that 
the incidence percentile-point results are sorted low to high.  

7.2.4.2  Currency Year and Income Growth 

The Currency Year and Income Growth window, accessed via the Advanced button 
on the Valuation Method window, allows you to specify an Inflation Dataset and a 
Currency Year, which in combination allow you to change the currency year to account 
for inflation. The Income Growth Adjustment panel allows you to adjust the valuation 
estimates to account for the growth in income over time for WTP functions. 



  Chapter 7 – Aggregating, Pooling, and Valuing 

BenMAP-CE User’s Manual  March 2023 
 7-36 

  

Inflation Adjustment  

The Inflation Adjustment needs to be carefully considered in relation to the valuation 
dataset that you are using. (This is discussed in detail in the section on loading inflation 
data in Chapter 4.) The default valuation database in the United States setup has a 
currency year of 2000, so the inflation dataset has a value of 1 for the year 2000.  

Income Growth Adjustment  

Willingness to pay (WTP) estimates are believed to be tied to the income of individuals. 
As income rises over time, WTP estimates are likely to increase as well. The Income 
Growth Adjustment is designed to take this phenomenon into account, allowing you to 
account for income growth between the time when WTP estimates were calculated and 
the year of your analysis.  

As with the Inflation Adjustment, the Income Growth Adjustment has a close 
connection to the valuation estimates. For example, the valuation estimates in the 
United States setup are assumed to be based on income levels from 1990, so the income 
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growth adjustment database has a value of 1 for the year 1990. (This is discussed in 
detail in the section on loading income growth data in Chapter 4.)  

To use the Income Growth Adjustment, you need to choose a dataset and then choose 
the income year that you want to use. By default, BenMAP-CE sets the Income Growth 
Year equal to the user-specified Population Year or to the latest year for which income 
growth adjustment data are available if less than the population year.  

7.3  Open & Modify Existing APV Configuration  

If you have an existing APV configuration (*.apvx) file or APV result file (*.apvrx), you 
can open, and edit it.  Double click Aggregate, Pool & Value from the main tree menu 
to load the APV Configuration or APV Result file. 

 
If you have only a few changes to make to an existing configuration, it is typically much 
quicker to open the previous configuration, rather than entering all of your choices 
again. Note that the various parts of an APV Configuration are quite interdependent, so 
modifying part of the configuration may cause other parts to be reset. For example, 
modifying the tree structure for incidence pooling will cause the valuation method 
selection and valuation pooling tree structure to be cleared and reset. Changing the 
Configuration Results Filename in the Select and Pool Incidence Estimates window 
will not reset the incidence or valuation pooling trees as long as the new file contains 
incidence results generated from the same health impact functions as the old file. This 
can be quite helpful for generating new APV Configuration Results from several 
different Configuration Results files which were generated from different 
baseline/control scenarios, but with the same set of health impact functions.  

7.4 Run APV Configuration  

After having specified the various aggregation, pooling, and valuation options, you can 
save your APV Configuration for future use. The file that you save has an “.apvx” 
extension. The configuration that you have specified for APV is similar to the 
configuration that you developed for choosing health impact functions. (That 
configuration has a “.cfgx” extension.) Both files allow you to save choices that you have 
made, and re-run them at a later time.  
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To save your APV configuration with your valuation pooling choices, click the Save As 
(*.apvx) button, and name your configuration file. We suggest that you save this in the 
Configurations folder. When ready to generate APV Configuration results, click the Run 
As (*.apvrx) button. BenMAP-CE then requires that you specify a file in which to save 
the results, with an “.apvrx” extension.  

7.5  View and Export Pooled Incidence and Valuation Results  

Using the results from the APV Results file (“.apvrx” extension), you can create, view 
and export reports that reflect the choices you made about how to aggregate, pool and 
value your results.  

7.5.1 Pooled Incidence Results  

The Pooled Incidence Results report provides results aggregated and pooled to the 
level that you previously specified in the Aggregation, Pooling, and Valuation 
Configuration file. This report has fewer Health Impact Function fields than the 
Aggregated Incidence Results Report, and values for others will be blank. This is 
because after pooling, only enough fields are retained to uniquely identify individual 
results.  

To generate pooled incidence results, click the Pooled Incidence tab in the upper 
portion of the main window.  Double-click to select the study results you would like to 
view.  The selected results should show up in the Data tab below, if not, click the Show 
Results button. Notice that you cannot re-aggregate the results in this stage, because 
you have already defined how to aggregate the results. You may also view the results on 
a map using the GIS Map tab and on a bar chart using the Chart tab. 

7.5.2 Pooled Valuation Results  

The Pooled Valuation Results report presents valuation results aggregated and 
pooled to the level you specified using the Advanced button when creating the APV 
configuration file. As with the Pooled Incidence Results Report, fewer Pooled 
Valuation Method fields are available, because only enough fields are retained to 
uniquely identify individual results. 

Click the Pooled Valuation Results tab to begin viewing these results.  Similar to the 
Pooled Incidence Results, you can double-click the study of interest and view the results 
table in the Data tab. Similarly, you may view the results on a map using the GIS Map 
tab and on a bar chart using the Chart tab.  

7.6  Frequently Asked Questions 

I am at the BenMAP-CE valuation window and cannot proceed. What should I do?  

In order to proceed to the next step, you must select a Variable Dataset from the drop- 
down menu in the Select Valuation Methods, Pooling, and Aggregation window. The 
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files in the Variable Dataset can include a variety of data, such as income and poverty 
data that might be used in health or valuation functions. For the default EPA health and 
valuation functions, you just need to select the EPA Standard Variables.  

If you have developed your own setup, then you need to make sure that you also load a 
Variable Dataset. This is necessary even if you do not need the extra variables that can 
be included in this dataset.  

How do I edit or add other valuation functions?  

To edit or add valuation functions you need to go to Modify Setup option in the Tools 
drop- down menu available in the upper left-hand corner of the main BenMAP-CE 
window. See the valuation function section in the chapter on Loading Data for details on 
how to do this. 

How do I know what year dollars (currency year) were used?  

You can find the answer in the Audit trail for the APVR file that you generated.  

Do the currency year and year of the population data have to match?  

No. The currency year and the year of the population data do not need to match.  
Currency years are always historical because we do not forecast inflation.   
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Chapter 8  
 

GIS/Mapping 
 
 
 
 
 
 
 
 
 
 
 
 
 

In this chapter… 
 Learn about BenMAP-CE’s mapping functions. 
 Map different variables and modify the map display. 

 
 
 
 



  Chapter 8 – GIS/Mapping 

BenMAP-CE User’s Manual  March 2023 
 8-2 

The BenMAP-CE Geographic Information System (GIS) will display maps of air quality, 
health and economic data. These maps can help answer a number of questions: 

 Quality assurance: Do your air quality changes seem to be distributed correctly? 
Are your air quality changes and health impacts occurring in approximately the 
same location? 

 Presentations: In what states or provinces are most of the benefits/disbenefits of 
your policy scenario concentrated?  

 Analysis: Which air quality grid cells contain the highest ozone values?  

The main GIS Map tool will be available once you have successfully completed the first 
stage of the BenMAP-CE analysis (Air Quality Surfaces in the main BenMAP-CE tree 
menu).  

8.1  Overview of Mapping 

The GIS will map three categories of data: 

1. Air quality (.aqgx). Air quality grid maps represent summary air quality metrics 
(e.g., daily average, daily maximum, or other metric where available) within each 
grid cell. Air Quality Grids can be added to the GIS Map by following the steps in 
Chapter 5: Creating Air Quality Grids.  

2. Incidence (.cfgrx).  A configuration results file contains the results of your 
analysis reported at each air quality grid cell. These results have not been 
aggregated, pooled or valued. For more information on choosing configuration 
settings, see Chapter 6: Estimating Incidence. 

3. Aggregated, pooled and valued results (.apvrx). These are results that have been 
aggregated to a coarser spatial scale, see Chapter 7:  Aggregation, Pooling, and 
Valuation.   

When mapping APV Configuration results, you can generate six different types of maps: 
(1) Incidence, (2) Aggregated Incidence, (3) Pooled Incidence, (4) Valuation, (5) 
Aggregated Valuation, and (6) Pooled Valuation. For more information on how to load 
these files into BenMAP-CE, see Chapters 6 and 7 (Estimating Incidence, and 
Aggregation, Pooling, and Valuation). 

8.2  Results Panel 

Once you have gone through all the steps outlined in the previous chapters to import 
data and files, you are ready to begin exploring the visual results.  Each of your selected 
endpoint groups will be displayed in the results panel (upper right portion of the main 
BenMAP-CE window). 
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There are four tabs within the results panel, Health Impact Results, Pooled Incidence 
Results, Pooled Valuation Results, and Audit Trail Report.  To create a results map 
layer for an endpoint group, select an entry, or entries, from the list and drag it down 
onto the GIS Mapping panel.  BenMAP-CE will create the map and place an entry into 
the GIS table of contents below the newly created results group.  The layer will most 
likely be listed under the author’s name as subgroup of the main results group.  This 
process of dragging-and-dropping can be done with as many entries as you like, on any 
of the first three tabs.   

Audit Trail Reports facilitate transparency and reproducibility by reporting a summary of 
your assumptions underlying each step of the analysis.  This is described in more detail 
below. 
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8.3  GIS Mapping Panel 

The GIS Mapping panel is the centerpiece of this tool.  Here is where you can view, edit, 
add, and remove layers from the table of contents and GIS map viewer. 

 

8.3.1  GIS Map Tab 

After creating an air quality surface, the GIS Map tab is used to view the air quality data 
(double-click on an available air quality surface to display it).  Here you will find a GIS 
table of contents, toolbar, and interactive map. 

8.3.1.1  GIS Table of Contents 

The GIS table of contents is where you will find all your loaded map layers.  The layers 
are sorted in groups, with subgroups below them.  The general setup will include 
Region Admin Layers group, Pollutants group, and Results group.  You can select or 
deselect as many layers or groups as you like, for viewing on the map to the right. 
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 Region Admin Layers: This is where the administrative grids can be found for 
country, state, and county boundaries.  For preloaded data, regional 
administrative layers have been defined.  For example, in the United States setup, 
the Nation, State, and County layer will be automatically selected. As discussed in 
Chapter 4, you can preselect default administrative layers for new setups you 
create when you import air quality grids.  You can turn administrative layers on 
or off by expanding the group. 

 Pollutants: This is where all the available pollutant data (from the tree menu) 
will be visible.  Under this main group, there will be a group for each pollutant 
that was selected (e.g., PM2.5).  Below the individual pollutant, there will be 
metrics that were defined earlier during import and loading (e.g., Quarterly 
Mean, D24HourMean).  Below each metric, there will be entries for each Air 
Quality Grid that was loaded (e.g., Baseline, Control, and Delta).  

 Results: This is where the layers for Health Impact Results, Pooled Incidence 
Results, and Pooled Validation Results will be listed.  Under the results group, 
there will be a subgroup labeled for each set of results.  Usually, these entries 
will be labeled by the study author’s name. 



  Chapter 8 – GIS/Mapping 

BenMAP-CE User’s Manual  March 2023 
 8-6 

Color Ramps 

The color ramps are standard for the imported files.  The default color ramp for the 
Baseline and Control Air Quality Grids goes from light green to dark blue.  The 
default color ramp for the Delta Air Quality Grid goes from light yellow to dark red.  
Finally, the default color ramp for the Results group entries will be different from 
each other and any other color ramps that are already in the table of contents. 

These color ramps can be changed by the user, if desired.  There are two possible 
ways to change the colors:25 

1) To change the whole color scheme: Right click on a layer and select 
the Properties option.  This will open a Layer Properties window, 
where you can change the color ramps and other properties.  

 

2) To change one index within a color ramp: Click on the color box or 
number range that you wish to change.  This opens the Polygon 
Symbolizer Properties window. 

 
25 BenMAP-CE uses DotSpatial to incorporate, analyze, and map spatial data.  The editing tools for layer 
properties are those included in the DotSpatial libraries and have not been customized for BenMAP-CE.  For 
more information, see: http://dotspatial.codeplex.com/. 
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Add/Remove a Group 

To add a group to the GIS table of contents, right-click on a group, and click Create 
New Group from the pop-up menu.  This will add the new group below the group 
that was right-clicked on. 

To remove a group from the GIS table of contents, right-click on the group you wish 
to remove, and then click Remove Group from the pop-up menu.  This will remove 
the entire group from the table of contents.  

Remove a Layer 

To remove a spatial layer from the GIS table of contents, right-click on the layer you 
wish to remove, and then choose Remove Layer from the pop-up menu.  This will 
remove the layer from the table of contents.   

Note: Adding a layer will be discussed in the GIS Toolbar section (Section 8.3.1.2). 
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8.3.1.2  GIS Toolbar 

There are a number of standard buttons used in most map viewing programs which 
you can use to navigate and customize the map view.  To see the name of each 
button in the toolbar (to the left of the GIS table of contents), simply hold the cursor 
over it.  

 Increase zoom. Allows you to zoom in.  

 Decrease zoom. Allows you to zoom out.  

 Drag mode. Allows you to manually move the map by clicking and dragging.  

 Zoom to full extent. Allows you to view the whole map that you are viewing. 

 
Click to display info for the cell in popup window. Allows you to display 
information (all the variable values) for individual cells or points by clicking on 
them.  

 
Attribute Table. Opens an Attribute Table Editor Window where the user can 
view, edit, or filter the data for a specific layer. 

 
Select Features. Allows you to select features from the map. Press and hold Ctrl 
to select multiple features at one time. 

 
Select By Location. Allows you to select features from a layer based on its spatial 
relationship with another layer.  

 Clear Selection. Clear selections from all layers.  

 
Add Layer.  Allows you to add a new layer to the table of contents and map.  
Typically the new layer is added near the top of the table of contents. 

 
Export Map Image.  Prepare print layout of GIS map and legend. 

 Save Shapefile. Save and export results from a GIS layer on current map. 

 
Change Projection to *projection type*. Allows you to change/toggle the type 
of map projections between the following types: GCS/NAD 83 (standard), Albers. 
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Creating a Query 

You can create a query on any map layer that shows up in the GIS table of contents.  
After importing a file (such as Baseline or Control) you can begin a query by 
selecting a layer.  The selected layer will become highlighted with a light blue bubble 
around it.  Next, click the Attribute Table button in the GIS toolbar.  This will open 
the Attribute Table Editor window, shown below: 

 

From the window above, click Selection from the top menu bar.  This will open a 
drop-down menu where you can select the Query option. 
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This will open Expression Editor window (shown below): 

 

The Expression Editor is used to query your data.  First, select a Field Name to 
query, by double-clicking on a desired entry.  The Field Name should show up in 
brackets in the bottom text box.  Next, select an operator from the panel of buttons.  
The selected operator symbol should show up in the bottom text box next to the 
field name.  Finally, to complete the first query entry, click in the bottom text box 
(after the operator symbol) and enter a value that you would like to compare 
against (e.g., [D24HourMean] >= 15).  More attributes can be added to the query by 
clicking the And, Or, or Not buttons.  Once you are satisfied with the query 
statement, click OK on the Expression Editor window.  It may take a few minutes to 
find all the results.  The Attributes Table Editor should appear, with the requested 
selections highlighted.  The map on the GIS portion of the main BenMAP-CE home 
screen should show the query results.   

To save these results, click the Selection button from the top menu bar of the 
Attribute Table Editor window.  From the dropdown menu, select the Export 
Selected Features entry.  This will open a Save As window, where you can save the 
query into a shapefile (.shp).  Click the Close button on the Attribute Table Editor. 
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To add the query as a new layer, click the ‘+’ button located in the GIS toolbar 
(located next to the GIS table of contents).  An Open window will be displayed, 
where you can select your recently saved shapefile.  Select the file and click Open.  
The new layer should appear near the top of the GIS table of contents.  The layer can 
be dragged-and-dropped into any map group you would like within the GIS table of 
contents. 

8.3.2  Data Tab 

The Data tab allows you to view all the data that is being presented in the map. 

 

At the bottom of this tab, there are a few options: 

 The left-most set of buttons allows you to toggle between pages of data. 

 The middle option allows you to change the number of digits that appear after 
the decimal point. 

 The far right entry allows you to export the data table.  Clicking the Export 
button opens a Save As window, allowing you to save the data as a .csv file. 
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8.3.3  Chart Tab 

The Chart tab allows you to select certain regions of data within the main layer to 
compare localized results more easily. 

 

You have the option of selecting the regions that you would like to compare using the 
list to the left of the chart by checking and unchecking certain regions.  The chart 
automatically updates with each new selection.26 

8.3.4  Audit Trail Report 

Audit Trail Reports facilitate transparency and reproducibility by reporting a summary of 
your assumptions underlying each of five types of files generated by BenMAP-CE: Air 
Quality Grids (with the .aqgx extension), Incidence Configurations (with the .cfgx extension), 
Configuration Results (with the .cfgrx extension), Aggregation, Pooling, and Valuation 
Configurations (with the .apvx extension), and Aggregation, Pooling, and Valuation Results 
(with the .apvrx extension).  

 
26 The data charts were originally developed using ZedGraph software, which is no longer supported.  The 
BenMAP-CE development team is considering options to update and improve this feature. 
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Note that each successive step in an analysis contains a summary of its inputs and 
attributes, and those of each previous step in the analysis. For example, in the above 
report the attributes of the Health Impact Function file used to generate the APV Results 
are present in the Estimate Health Impacts node. Similarly, the metadata for both the 
baseline and control air quality grids are present under the Estimate Health Impacts 
node.  
 
The process of creating an Audit Trail is described below: 

 
 Click the Audit Trail Report tab in the results window. Select Current Audit 

Trail Report (this is the default setting). Click OK.  

 Carefully review the report, ensuring that the air quality grids, population data, 
health incidence data, health impact functions and economic value estimates 
appear as you expected.  
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 Click the Export button to save the audit trail report. The default location for 
saving audit trail export (.txt, .ctlx, or .xml) files will be the location you chose 
earlier for saving your shape files.  

Audit Trail Reports have three export options: 
.txt, .ctlx, and .xml.   These file types can all be 
viewed using a standard text editor.  The .txt and 
.xml files will contain the same information 
displayed in the Audit Trail Report window 
(however, the .xml file contains tags to retain the tree structure). If you are familiar with 
the command line feature, you may use the audit trail report to produce a control (.ctlx) 
file using an existing analysis, rather than creating one from scratch.   The control file 
documents variables and configurations (file paths) associated with an analysis.  For 
more information about the command line tool see Appendix L. 

8.4  Frequently Asked Questions 

Can I reorder the data layers?  

Yes, data layers may be dragged within the GIS table of contents to reorder them within 
a group. 

How do I export shapefiles?   

When viewing any of the displayed maps n the GIS Map tab (lower right frame of the 
main window), click on the GIS toolbar icon for Save Shapefile (looks like a 3.5-inch 
diskette).  Follow the prompts to provide a name and location for the file.  BenMAP-CE 
will export a set of files (.dbf, .prj, .shp, .shx) associated with the shapefile that you can 
use with any GIS viewer.  

How do I save a GIS map as an image?  

To export the map as an image, click the Export map image icon (immediately below the 
Save Shapefile icon).  This will use built-in DotSpatial GIS tools to allow you to save the 
map as a formatted image (.png) file.  Alternately, use the Print Screen (PrtScn) button 
on your keyboard to create an image (saved in memory) which you can then paste into 
a graphics editor or document. 

Can I display my map using a projection other than GCS-NAD 83 or Albers?  

Yes, click the GIS toolbar icon for “change projection to…”; this feature will allow you 
to alternate between GCS-NAD83 and Albers projections.  For more options, right-click 
on the Map Layers feature in the GIS table of contents and select Projection from the 
pop-up menu.  This will display information about the current projection. Click the 
Change Projection button to view and apply other available projections. 

BenMAP-CE Guidance and Best Practices 
 
It is always recommended that you save 
your Audit Trail Report at the end of each 
analysis. 
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Tools Menu 
 
 
 
 
 
 
 
 
 
 
 
 
 

In this chapter… 
 Learn about the options in the Tools menu. 
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The Tools menu, available on the main BenMAP-CE screen, provides access to six 
special add-on tools and an Options menu. Below we summarize the purpose of each 
tool. Note that other sections of the manual have already covered several of these items, 
so we merely list them here and point you to the appropriate section. 

 

 Aggregate Air Quality Surface. Use this tool to change an air quality grid based 
on one grid definition to a coarser grid definition, using a simple spatially 
weighted average approach. For example—you could aggregate your air quality 
surface from 12km × 12km grids to U.S. Counties.  

 Database Export. Export your entire database (every item in your setup) or 
parts of your setup (e.g. all GridDefinitions, or individual Health Impact Function 
Datasets) to a specified file location.  

 Database Import. Import an entire setup or parts of an individual setup from a 
specified file location.  

 Online Database Export.  Export your BenMAP-CE dataset(s) and upload to a 
cloud-based data archive to share with the BenMAP-CE community. 

 Online Database Import.   Import dataset(s) provided by the BenMAP-CE 
community from a shared cloud-based data archive. 

 Export Air Quality Surface. Generate a data file that contains all of the air 
quality values saved within an air quality surface (.aqgx) file. 

 GBD Rollback. This application estimates the air pollution-attributable health 
burden, and the benefits of improved air quality, in each country using data from 
the Global Burden of Disease (GBD) study. 
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 Monitor Data Conversion. Convert monitor data files into BenMAP-CE format. 

 Neighbor File Creator. This tool creates a text file (.txt) identifying "neighbor" 
monitors and associated interpolation weights for each grid cell in an air quality grid. 
Identifying the major contributors to air quality in a given cell can be helpful for 
understanding and troubleshooting BenMAP results, and for understanding how 
different geographic patterns of air quality changes can affect health benefits.   

 PopSim.  Simulate the cumulative effects of air pollution on different age groups 
over time (U.S. data only). 

 Options. View and edit the general options for BenMAP-CE.  

 Compute Grid Crosswalks. Remove or re-create crosswalks between grid 
definitions. 
 

9.1 Air Quality Surface Aggregation 

Using the Aggregate Air Quality Surface tool, you can change an air quality grid based 
on one grid definition to another (coarser) grid definition, using a simple spatially 
weighted average approach.  

To start, choose Aggregate Air Quality Surface from the Tools drop-down menu. This 
will bring up the Aggregate Air Quality Surface window. Click the Browse button to 
find the air quality grid (.aqgx file) that you want to change and then use the 
Aggregation Surface drop-down list to select the new grid definition that you want to 
use.  For example, you might want to aggregate a 12km model grid to the county-level.  
Click OK when done. 

 
This will bring up the Save Aggregated Air Quality Grid window, where you specify 
the name of the newly aggregated air quality surface (.aqgx file) you are creating and its 
location. After the file is created, BenMAP-CE will return you to the main BenMAP-CE 
screen. You can then use the new file just as you would any other air quality surface.  

Below is an example of an air quality surface for PM2.5 created by the CMAQ model 
using a 12km grid.  (The following images are cropped from the main BenMAP-CE 
window to focus on the GIS panel.) 
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Here is an example of the above 12km air quality surface aggregated to the county level. 

 
And, here is an example of the 12km air quality surface aggregated to the state level. 
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Observe that there is more variation in the county-level file than the state-level file. This 
is expected, because BenMAP-CE is just using a simple spatially weighted average of the 
data.  

9.2 Database Export 

BenMAP-CE allows you to export and import entire databases (all Available Setups), 
individual setups (e.g., United States, China), and parts of individual setups (e.g. all Grid 
Definitions, or individual Health Impact Function datasets). This functionality can be 
used to archive data, share data with other BenMAP-CE users, move databases between 
computers, as well as to view data in other applications like Excel or ArcMap. In 
particular, all of the steps involved in creating a setup can be done just once, after which 
the data can be exported and then imported on other computers. Version 1.5 also 
allows users to import databases exported from previous versions.  This can be useful 
for transferring existing setups to the new version of BenMAP-CE without needing to 
re-recreate them.  

To export part or all of an existing setup, go to the Tools menu, and choose the Database 
Export option. 

This will bring up the Database Export window. Initially, all of the setups are listed in a 
tree menu, which is initially in a collapsed view. To expand any of the menu items, click 
on the ‘+’ sign to the left of menu item. This will expand the tree menu to show 
additional listings for the expanded item. To collapse the tree menu, simply click on the 
‘-’ sign.  
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Choose a dataset to export by selecting it from the tree menu. The default Type of 
Export is BenMAP CE database. Press OK. In the screenshot below, we have chosen to 
export EPA Standard Monitors O3 to a BenMap-CE database file.  

 
 

This will bring up the Save As window. From here you may name the export file, select 
the export file type and choose the save location. 
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NOTE: Exported BenMAP-CE database files have a .bdbx extension, and are a binary 
format not suitable for viewing in external applications.  

To view exported data in external application, choose “Other file Format”. The tool will 
export Grid definitions in shapefile (*.shp) format and the rest of the data in CSV (*.csv) 
format. If the dataset contains multiple tables, it will be exported into multiple CSV files. 
In the screen below, we have chosen to export EPA Standard Variables to a CSV file.  
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In the Save As window, the File name has been pre-populated with dataset name. You 
may leave it as is or change to something you want.  
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In this case, each variable of EPA Standard Variables dataset is saved as one CSV file 
with its variable name appended to the end of the dataset name.  

 

NOTE: When exporting datasets in Other File Format, only one dataset can be selected 
at one time. 

9.3 Database Import 

Import entire setups or parts of individual setups. This option is described in the 
Import Setups section of Chapter 4: Loading Data. 

To import part or all of an existing setup, go to the Tools menu, and choose the 
Database Import option. This will bring up the Database Import window.  
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The Database Object File identifies the file that you want to import. Click on the 
Browse icon to locate the file. This will display the Open window.  

Find and select the .bdbx file that you want to import, and then click Open. This will 
return you to the Database Import window. Click OK to finish the import process. 

If the import file contains a subset of a setup, such as a collection (e.g., a set of Grid 
Definitions) or an individual dataset (e.g., a single grid definition from among many 
available), select the Setup into which it should be imported from the Target Setup 
drop-down list. Click OK to finish.  

NOTE: Duplicates of datasets (typically identified by their names, e.g., ‘Detroit 
Population’) will default to the existing dataset in the Setup. New datasets (i.e., non-
duplicated) will be added to the setup. 

9.4 Online Database Export  

The Online Database Export feature was designed to facilitate sharing of BenMAP-CE 
datasets among the user community.  The data is stored in an online database.  Sharing and 
use of this data is at the discretion of the user community. 
 
To share data in the online repository, select Online Database Export from the BenMAP-CE 
Tools menu.  In the EPRI Online Database Export form, provide your name (required 
field), organization, and a description of the data you are sharing.  Then select the object 
you wish to export from the tree menu.  Similar to the database export feature (see Section 
9.2), you can select an entire setup, dataset type, or specific data element.  Once you make 
your selection and click “OK”, you will be prompted to confirm the upload. 
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9.5 Online Database Import  

The Online Database Import feature was designed to provide user access to an online 
repository of BenMAP-CE datasets shared by the user community.  To import data from the 
online repository, select Online Database Import from the BenMAP-CE Tools menu.  Select 
the data you wish to import by clicking on the record selector on the left side of the data 
grid.  The record will be highlighted.  Next choose your Target Setup from the dropdown 
list.  Then, click the “OK” button.  The progress bar near the bottom of the screen will 
update to show progress of the import.  When complete, the system will notify you that the 
“The database file was imported successfully.” 
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9.6 Export Air Quality Surface  

The Export Air Quality Surface tool generates a data file (.csv) reporting all of the data 
contained in the air quality grid. After choosing Export Air Quality Surface from the 
Tools menu, the Export Air Quality Surface window will appear. Click the Browse 
button to choose the air quality grid that you want to examine. 

  
Click OK after you have selected your file. Use the Save As window to choose the 
directory where you want to save your file. And in the File name box, type in the name 
of the file.  

To help keep track of what you are doing, you might want to use the same file name as 
your air quality grid, or something very similar. (If you use the same name, you can 
always distinguish the two files by the extension. An air quality grid has an .aqgx 
extension and the file you are generating here has a .csv extension.) 

When done, click the Save button. You can view the files you have created with any 
database viewer. For each Metric and Seasonal Metric, you can see the actual values. 
In addition, you can see the Statistics calculated for each. In the example below for a 
12km PM2.5 air quality surface, you can see in the first grid cell (Column = 1, Row = 246) 
that the mean of the D24HourMean values is 9.15 and the mean of the QuarterlyMean 
values is 9.2. 
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Col Row D24HourMean QuarterlyMean 
1 246 9.15 9.2 
2 246 9.16 9.2 
3 246 9.16 9.21 
4 246 9.17 9.21 
5 246 9.17 9.22 
6 246 9.54 9.65 

Note that the exported files may be very large (tens to hundreds of megabytes in file 
size and with row counts exceeding typical spreadsheet applications). With large files, 
you might need to use a database program to work with the files. Alternatively, these 
files can also be read by simple text editors. 

9.7 GBD Rollback 

The World Health Organization global burden of disease (GBD) study measures burden 
of disease using the disability-adjusted-life-year (DALY). This time-based measure 
combines years of life lost due to premature mortality and years of life lost due to time 
lived in states of less than full health. The DALY metric was developed in the original 
GBD 1990 study to assess the burden of disease consistently across diseases, risk 
factors and regions.27 

The GBD Rollback tool uses data from the 2013 GBD study to allow users to estimate 
the human health burden of PM2.5 levels in each country as well as the benefits of 
reducing these air pollution levels. Users can “roll back,” or adjust ambient PM2.5 levels 
in one or more countries or regions and calculate the total burden, or avoided deaths, in 
that region. The tool also estimates avoided life years lost, changes in life expectancy, 
and the economic benefits associated with avoided deaths.  

This feature is analogous to the monitor roll-back tool already available in core 
BenMAP-CE (discussed in Chapter 5); that tool allows users to adjust downward (or 
upward) air quality monitoring data in specified locations according to various 
algorithms (including proportional, quadratic and incremental rollbacks).  The tool uses 
a grid with 0.1 degree resolution (approximately 10km) grid cells and includes: 

• 2015 PM2.5 pollution concentrations28.  Negative concentrations were adjusted 
to zero. 

 
27 For more information on the GBD, see: http://www.who.int/topics/global_burden_of_disease. 
28 Cohen, A. J.; Brauer, M.; Burnett, R. T. (2017). Estimates and 25-year trends of the global burden of disease 
attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. 
Lancet, 389(10082), 1907-18. 

http://www.who.int/topics/global_burden_of_disease
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• 2015 global population29 data stratified by age and gender. Elder populations 
were combined into an "80UP" age group to align with the incidence dataset. 

• 2013 mortality incidence30 for six health endpoints (COPD, cerebrovascular 
disease, ischemic heart disease, lung cancer, acute lower respiratory infection, 
and non-accidental) stratified by age and gender.  Neonatal ("0 to 0") and "1 to 
4" age groups were combined into a "0 to 4" age group to align with population 
data. 

• The 2013 Integrated Exposure Response (IER) function31 employed by the 2013 
GBD study to estimate premature mortality associated with ambient air 
pollution. The 2013 IER function estimates premature mortality from COPD, 
cerebrovascular disease, ischemic heart disease, and lung cancer. 

• The Shape-Constrained Health Impact Function (SCHIF) developed by Burnett et 
al. (in preparation)32. Like the IER, the SCHIF is a meta-analytic concentration-
response function developed using data from many PM2.5-related 
epidemiological studies. Depending on the country being evaluated, the SCHIF 
estimates draw from mortality incidence from either (a) all non-accidental 
causes, or (b) a “re-attributed” incidence rate representing deaths due to COPD, 
cerebrovascular disease, ischemic heart disease, lung cancer, and acute lower 
respiratory infection). 

 
29 Center for International Earth Science Information Network - CIESIN - Columbia University. 2016. Gridded 
Population of the World, Version 4 (GPWv4): Administrative Unit Center Points with Population Estimates. 
Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). 
http://dx.doi.org/10.7927/H4F47M2C. 
30 Global Burden of Disease Study 2013. Global Burden of Disease Study 2013 (GBD 2013) Incidence, 
Prevalence, and Years Lived with Disability 1990-2013. Seattle, United States: Institute for Health Metrics and 
Evaluation (IHME), 2015.  http://ghdx.healthdata.org/record/global-burden-disease-study-2013-gbd-2013-
incidence-prevalence-and-years-lived-disability 
31 Burnett RT, Pope CA, Ezzati M, Olives C, Lim SS, Mehta S, Shin HH, Singh G, Hubbell B, Brauer M, Anderson 
HR, Smith KR, Balmes JR, Bruce NG, Kan H, Laden F, Pruss-Ustun A, Turner MC, Gapstur SM, Diver WR, Cohen 
A. (2014). An integrated risk function for estimating the global burden of disease attributable to ambient fine 
particulate matter exposure. Environ Health Perspect 122:397-403; http://dx.doi.org/10.1289/ehp.1307049 
32 Burnett RT, Chen H, Szyszkowicz M, Fann N, Hubbell B, Pope CA, Apte JS, Brauer M, Cohen A, Weichenthal S, 
Coggins J, Di Q, Brunekreef B, Frostad J, Lim SS, Kan H, Pruss-Ustun AM, AARP collaborators, ACS 
collaborators, CTS collaborators, Canadian Breast Screening collaborators, CanCHEC/CCHS collaborators, 
Chinese Male Cohort Collaborators, CUELS collaborators, English Cohort collaborators, Hong Kong 
collaborators, NHIS collaborators, NHS collaborators, Rome Census Cohort collaborators, VHM&PP 
collaborators. 2017. A new approach to estimating global mortality burden from outdoor fine particle 
exposure. Manuscript in preparation. 
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To begin, select GBD Rollback from the Tools menu.  The GBD Rollback Tool window 
will be displayed.  

 

9.7.1 Create New Scenario 

To create a new scenario, first provide a Scenario Name (required) and description for 
the scenario (optional).  Then, click the Select Region button.   

9.7.2 Select Regions or Countries 

 The Region Selection box provides options to view Regions (as defined in the GBD 
study) with the associated countries listed beneath, or to view Countries.  Multiple 
selections are possible with either selection method and you can toggle between the 
two. 

If you view Regions, you can select an entire region (all countries within this region) by 
checking the box next to the desired region.  To view the individual countries for a 
region, click on the ‘+’ sign to the left of the region. This will expand the tree menu. To 
collapse the tree menu, simply click on the ‘-’ sign.  

If you do not know the name of the region which contains the country you want to 
select, click the option to view Countries.  You can search the alphabetically-sorted list 
to find countries. 
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As you make selections, the map will highlight them in a bright blue color.  Note that the 
map is not interactive (i.e., you cannot click on the map to make selections).  The 
toolbar located above the map allows you to zoom in and out, pan, view full extent, and 
identify countries.  

  

9.7.3 Choose Rollback Settings 

After selecting the countries or regions to analyze, click the Rollback Settings button. 
The Rollback Settings pane allows you to 
choose the Rollback Type (Percentage 
Rollback, Incremental Rollback, or Rollback 
to a Standard) and configuration options.33 
(An illustrative example for the selected 
Rollback Type will be displayed below the 
Options box.)  The tool allows for a negative 
rollback, indicating an increase in pollution 
concentration. 

For Percentage and Incremental Rollback 
types, you must enter a percent value or 
whole number by which to reduce the pollutant concentration in all grid cells in the 

 
33 The tool uses a background PM2.5 concentration = 5.8 µg/m3 (lowest measured level in epidemiological 
literature). 

Fundamental Concept - Rollback 
 
A rollback is a simplified type of BenMAP 
analysis in which all monitor data are reduced 
under the Control scenario using a uniform 
rule. BenMAP-CE includes three rollback 
options for monitor data: Percentage rollback 
reduces all monitor observations by the same 
percentage. Incremental rollback reduces all 
observations by the same increment. Rollback 
to a standard reduces all monitor 
observations as necessary so that they all meet 
a specified standard. 
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selected countries.  If you select Rollback to a Standard, you may select from a list of 
national pollutant standards enforced by various countries in different years34.  

Standard Group Concentration Limit (µg/m3) Exposure Duration 
WHO 10 Annual 

US Primary 12 Annual 
US Secondary 15 Annual 

EU 25 Annual 
Japan 15 Annual 

China Class I 15 Annual 
China Class II 35 Annual 

Hong Kong 35 Annual 
India 40 Annual 

Singapore 12 Annual 
WHO 25 24-hour 

US Primary 35 24-hour 
Japan 35 24-hour 

China Class I 35 24-hour 
China Class II 75 24-hour 

Hong Kong 75 24-hour 
India 60 24-hour 

Singapore 37.5 24-hour 
 

The Function dropdown allows users to select either the SCHIF (Burnett et al., 2017) or 
the IER function used in the 2013 GBD studies (Burnett et al., 2014).  

9.7.4 Choose Mortality Valuation Settings 

Once you have completed the Rollback Settings window, click the Mortality Valuation 
button. The Mortality Valuation Settings pane allows you to specify how you wish to 
calculate the economic benefits associated with avoided premature deaths.  

Estimated reductions in premature mortality 
are valued using country-specific estimates of 
the value per statistical life (VSL). This value is 
not the monetary value of individual lives. 
Rather, it reflects the amount individuals are 
willing to pay to incrementally reduce their 
risks of death from adverse health conditions 
that may be caused by environmental pollution. 
For example, if each individual in a population 

 
34 Air Quality Standards / Guidelines / Objectives For Different Countries (updated April 2014).  Table 
developed by Scott Voorhees, US EPA. 

Fundamental Concept - VSL 
 
The Value of Statistical Life (VSL) is the 
monetary value derived from economic 
studies of the amount of money 
individuals are willing to exchange for 
small reductions in their annual mortality 
risk, integrated over a whole population.  
It does NOT reflect the value of the life of 
any specific individual.  
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is willing to pay $20 to reduce his or her risk of death by 10 in 100,000, the VSL for that 
population would be $200,000 (= $20 ÷ (10/100,000)). For 500 avoided deaths in that 
population, the economic benefit would be $100,000,000 (= 500 * $200,000).  

The VSL Standard dropdown menu allows users to select the VSL estimate applied to 
mortality risk reductions. Because VSL estimates from primary research are not 
available in most countries, it is necessary to transfer international estimates across 
countries, adjusting for differences in income levels.35 Users may select one of two base 
VSL estimates generously provided by the authors of World Bank (2016).36 VSL 
estimates were derived by the authors using a benefit-transfer approach, with a base 
VSL of $3.83 million (2011 USD) as recommended by a meta-analysis of willingness-to-
pay (WTP) studies by the Organisation for Economic Co-operation and Development 
(OECD). The base VSL is transferred to other countries and years using the following 
formula: 
 

𝑉𝑉𝑉𝑉𝑉𝑉𝑐𝑐,𝑛𝑛 = 𝑉𝑉𝑉𝑉𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ∗ �
𝑌𝑌𝑐𝑐,𝑛𝑛

𝑌𝑌𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
�
𝑒𝑒

 

 
where 𝑉𝑉𝑉𝑉𝑉𝑉𝑐𝑐,𝑛𝑛 is the VSL for country c in year n; 𝑉𝑉𝑉𝑉𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 is the base OECD VSL; 𝑌𝑌𝑐𝑐,𝑛𝑛 is the 
GDP per capita for country c in year n; 𝑌𝑌𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 is the average GDP per capita for the 
sample of OECD countries (roughly $37,000); and 𝑒𝑒 is the income elasticity of the VSL. 
In all instances, monetary values are adjusted for price inflation and converted to 2011 
U.S. dollars at purchasing power parity (PPP) rates. While the authors provide VSL 
estimates for a range of income elasticity (𝑒𝑒) values, we present their central results, 
which assume an elasticity of 1.2 for low- and middle-income countries, and 0.8 for 
high-income countries. This benefits transfer approach is also used with a base VSL 
estimate from USEPA of $8.7 million (2011 USD). 

Additionally, we use country-level VSL estimates to derive population-weighted 
average VSLs by GBD regions. These VSLs allow GBD Tool users to value reduced 
mortality at the regional level.  The regional VSLs are also used to impute missing 
country-level VSLs for 29 of the 210 countries in the GBD tool. The “Metadata” tab in the 
GBD Tool Output spreadsheet displays VSL estimates by country and region. 

The left pane of the Mortality Valuation Settings window provides a list of countries 
with their respective VSL estimates. Once you have selected the base VSL estimate 
(OECD or USEPA), click the Save Scenario button to save your rollback configuration.  
The map will update the color of the selected countries so that each saved scenario is 
uniquely different. 

 
35 Mortality risk reductions have been shown to be sensitive to income; individuals are willing to pay more for 
risk reductions as their income increases. Thus, the VSL is commonly adjusted to reflect differences in the 
average income levels both across countries and within a country over time. 
36 World Bank and IHME (2016). The Cost of Air Pollution: Strengthening the Economic Case for Action. 
Washington, DC: 2016 International Bank for Reconstruction and Development/The World Bank. 
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The table at the bottom of the window will update to display the attributes for the saved 
scenario (Scenario Name, Color, Total Countries, Total Population, Type of Rollback, etc.), 
along with an Execute? option for you to indicate whether the tool should execute or 
ignore the scenario.  If you double-click in the Total Countries or Total Population fields, 
the program will display a table of the individual countries and populations included in 
the scenario. 
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9.7.5 Execute Scenarios and Save Results 

Click the Execute Scenarios button to generate results for saved scenarios.  If a 
selected country does not have sufficient data (i.e., population, pollution concentration, 
or incidence rates) to perform the analysis, it will be bypassed and a message (including 
the country name) will be provided. 

If you are adding to a list of saved scenarios and do not want to re-run the previously 
executed ones, uncheck Execute? in the summary table so that only the new scenario is 
checked. 

Upon execution, the GBD Rollback tool will export results in (.xlsx format) to a default 
file location.37  You can change the file location by clicking the Browse button.  You can 

 
37 The files are stored by default at the following location:  C:\Users\<User Name>\Documents\My BenMAP-
CE Files\GBD. 
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also change the export file format to CSV by clicking on the Format drop-down list.  The 
results file is named using the Scenario Name followed by the time stamp of scenario 
execution.   

 The XLSX option provides a formatted summary table, detailed results, charts, and 
metadata about the supporting datasets used in this analysis.   

 The CSV option will only create two files:  one containing the summary data and one 
with detailed results. 

If you want to edit or delete saved scenarios, select one record at a time from the 
scenario table (use the record selector on the left side of the grid) and click the Edit 
Scenario or Delete Scenario button.  If a scenario is edited and re-executed, the 
timestamp in the filename will help the user identify the new version.  

Once you close the GBD Rollback tool, the scenarios are cleared from memory; 
scenarios are not saved in the BenMAP-CE database.  Information about the scenario 
configurations are saved in the results file to help you document the analysis and re-
create it if necessary. 

 

 
 
The GBD results file (.xlsx format) contains six worksheet tabs, described as follows: 

 Summary: Gives a basic background on the scenario chosen, including name, 
description, pollutants, rollback type, health impact function, VSL selection, and 
countries.  It also provides a quick overview of total and affected population results. 

 Detailed Results: Gives in-depth breakdown of population and results for each 
selected country.  Important fields on this tab include Population Affected, Avoided 
Deaths (Total), Economic Benefits, Avoided Life Years Lost, and Change in Life 
Expectancy. 

 Avoided Deaths by Country: Displays the number of avoided deaths for the region 
and by country in a bar graph.  This graph was generated from the data on the 
Detailed Results tab. 
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 Deaths Per 100,000: Displays the number of deaths for each country (with a 
population multiplier of 100,000) in a bar graph.  This graph was generated from 
the data on the Detailed Results tab. 

 Economic Benefits: Displays the economic benefits associated with avoided 
premature mortality for the region and each country in a bar graph. This graph was 
generated from the data on the Detailed Results tab. 

 Metadata:  Provides supplementary information about the underlying data and 
functions used by the GBD Rollback tool. 

9.8 Monitor Data Conversion  

The Monitor Data Conversion Tool provides the user with a mechanism to transform 
their data from commonly available formats (e.g., one monitoring result per row) to 
BenMAP-ready format. The tool is currently under development for inclusion in a future 
version of BenMAP-CE. 
 
9.9 Neighbor File Creator  

The Neighbor File Creator tool generates a file containing gridded monitor data 
created by BenMAP-CE for Monitor Data or Monitor Rollback air quality surfaces.  

To start, choose Neighbor File Creator from the Tools drop-down menu. This will bring 
up the Create Neighbors File window. Click on the Browse button, and find the air 
quality surface you want to analyze. 

  
After locating the file, click the OK button. The file path for the selected file will be 
displayed in the Air Quality Surface box.  Click OK.  A Save As window will open.  
Provide a file name for the Neighbors file (.csv) you want to create and click Save. An 
example Neighbors File is shown below.  
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Col Row MonitorName Weight Distance 
1 246 410030013881011 0.215167 627.5258 
1 246 530410006881011 0.253047 533.5881 
1 246 530090009881011 0.286508 471.2713 
2 246 410030013881011 0.213318 620.813 
2 246 530410006881011 0.252881 523.688 
2 246 530090009881011 0.287978 459.8632 
3 246 410030013881011 0.211387 614.2613 
3 246 530410006881011 0.252682 513.8765 
3 246 530090009881011 0.289525 448.4836 

 

The first two columns specify the Column and Row variables for each grid cell. In the 
example above, you will see that Column = 1 and Row = 246 are repeated three times, 
indicating that three different monitors were used to estimate air quality at this grid 
cell. The MonitorName column provides the monitor identifier. The Weight column 
specifies the weight used in the air quality calculation (e.g., Voronoi Neighbor 
Averaging). And the Distance column gives the distance (in kilometers) from the 
monitor location to the center of the grid cell.  

Note that if an air quality grid was created using the Closest Monitor option (see Chapter 
5 under the Monitor Data section), then only a single monitor is used for any given grid 
cell. As a result, the neighbor file will contain the same 5 fields, but the Weight column 
will contain a value of “1” all the way down.  In addition, there will only be one entry for 
each grid cell. 

Col Row MonitorName Weight Distance 
1 246 410030013881011 1 627.5258 
2 246 410030013881011 1 620.813 
3 246 410030013881011 1 614.2613 
4 246 410030013881011 1 607.8755 
5 246 410030013881011 1 601.661 
6 246 410671003881011 1 548.5376 
7 246 410671003881011 1 541.038 
8 246 410671003881011 1 533.702 
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9.10  PopSim  

The Population Simulation (PopSim)38 model was designed to estimate two outputs related 
to premature mortality attributed to the CAAA:  life-years lost, and changes in life 
expectancy.  The population simulation approach provides some advantages over the 
BenMAP-CE model in terms of simulation of the dynamic effects of mortality across a 
population through time, but also has several significant disadvantages relative to 
BenMAP-CE in terms of the spatial resolution of pollutant exposure estimates. As a result, 
the population simulation approach operates as a supplement to the BenMAP-based 
primary estimates for selected measures of the impact of reducing risks of premature 
mortality.  

 
PopSim is designed to track the effect of alternative assumptions about the mortality effects of 
fine particulate matter (PM2.5) air pollution in the U.S. population over time. The tool 
incorporates detailed life table data for historical years, by age, gender, and cause of death, 
obtained from the Census Bureau and the Centers for Disease Control (CDC). It also 
incorporates Census mortality and population projections for future years, again by age and 
gender, using the projected death and birth rates that underlie the Census Bureau’s published 
population projections. 
 
The PopSim model allows users to: 

• Simulate population in the U.S. by single year cohorts of age and gender for years 
between 1980 and 2050 under alternative assumptions about the degree of hazard 
posed by air pollution relative to baseline historical and projected Census mortality 
rates; 

• Estimate changes in life years relative to baseline Census mortality rates; 

• Apply air pollution hazards differentially by cause of death; and 

• Analyze the effect of alternative cessation lag structures on the timing of total 
mortality and on total life years in the U.S. population, based on differential 
application by cause of death or other specifications of cessation lag. 

The dynamic life-table approach used in this model can theoretically provide improved 
estimates of the mortality impacts of air pollution in future years over the more common 

 
38 The PopSim tool in BenMAP-CE is based upon an Access-based model originally developed for EPA by 
Industrial Economics, Inc.  This Population Simulation model is described in Chapter 5 of EPA’s “Second 
Prospective Study – 1990 to 2020 – Benefits and Costs of the Clean Air Act.  U.S. Environmental Protection 
Agency, Office of Air and Radiation, April 2011.” 

The core BenMAP-CE program estimates changes in adverse health effects based on 
changes in air quality for one specified analysis year, even though certain health benefits 
may occur after the analysis year.  Conversely, the PopSim tool estimates the change in 
population mortality risk over a multi-year period, but it is not yet possible to estimate 
the economic value of these impacts in BenMAP-CE. 
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static approach because it explicitly accounts for the year-to-year cascade of impacts on 
mortality and population following an air pollution change. 
 
To use the PopSim tool, first select PopSim from the BenMAP-CE Tools menu. 
 

 
 
Click through each of the menu items (e.g., Years, Response, PM changes, Ages affected, 
Lag type, and Other) and review the default settings, or adjust the values as needed.  For 
more information on the underlying datasets or model specifications, please refer to the 
“Population Simulation Model for Air Pollution Hazards. Version 3.0. User Manual and 
Documentation” (IEc, September 2015).   
 
When you are finished with the model settings, click the Run model button on the Run 
screen.  A progress bar will be displayed as the calculations are performed.  When the 
model run has completed, a dialog will be displayed. Click OK to acknowledge the message.  
Then click the Output button.  Specify a location to save the model results.  By default, the 
tool will save to the “My Documents\My BenMAP-CE Files\PopSim” folder.  The progress bar 
will once again display as the files are saved to your destination.  When complete, a dialog 
will indicate “File Saved”. Click OK to acknowledge the message.  You may close the PopSim 
tool, or return to the beginning to initiate a new model run.  The tool will remember the 
settings from the previous run only. 
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9.11  Options   

You can customize some of the generic options for BenMAP-CE using the Options 
window available from the Tools menu.   

 
 Show Start Window:  If unchecked, the Welcome window will not appear during 

subsequent start-ups.  You can update your choice at any time. 

 Show Exit Window:  If unchecked, the window confirming you would like to exit 
will not appear during subsequent shut-downs.  You can update your choice at any 
time. 

 Require Validation for Data Imports:  If checked, you will be required to validate 
their input files prior to importing datasets.  If unchecked, validation will be an 
available option but it will not be required. 

 Delete Validation logs after __ days:  You can specify the number of days BenMAP-
CE will retain the validation logs (the default value is 30 days).  If the number of 
days is left blank, BenMAP-CE will not automatically delete any validation logs.39 

 Delete Validation Error Logs Now:  Select this button if you want to immediately 
clear all validation logs.  Note: There is no confirmation option here – once the button 
is clicked, all logs will be deleted.  

 Default setup:  Select the preferred setup to appear by default in the main 
BenMAP-CE window. 

9.12  Compute Grid Crosswalk    

The Compute Grid Crosswalk tool allows users to manually remove crosswalks and re-
generate selected crosswalks. A crosswalk is a file used to relate data, such as air 
quality, population and demographic data, at one spatial scale to another. Crosswalks 

 
39 Validation logs are saved at C:\Users\<User Name>\Documents\My BenMAP-CE Files\ValidationResults. 
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are created during when importing a grid definition or calculating health impacts and 
economic benefits. BenMap-CE does not remove or overwrite a crosswalk automatically 
if it already exists. In cases where a crosswalk was broken due to database error or 
force quitting of the application, users can use this tool to remove the crosswalk from 
the database. Users may then  let BenMap-CE automatically re-generate the crosswalk 
during processing or re-create it in the tool to save time later. 

To re-create crosswalks, go to the Tools menu, and choose the Compute Grid 
Crosswalks. 

This will bring up the Crosswalk Calculator window. You will see all grid definitions 
associated to the active setup are listed in both windows. To switch to a different setup, 
choose another setup from Available Setups.    

 

To remove all crosswalks among the grid definitions in the windows, click Clear 
Existing Crosswalks. A message box will pop up asking you to confirm this operation. 
Click OK to confirm. In the screenshot below, we are trying to remove all existing 
crosswalks for Detroit setup from the database. NOTE: crosswalks for default setups 
(e.g. China and United States) are locked and cannot be removed.  
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To create or overwrite a crosswalk between two grid definitions, highlight one grid 
definition from the left side, highlight the other grid definition from the right side, and 
click Compute Crosswalk button. If the crosswalk already exists, you will be asked to 
confirm replacement by clicking OK in the message box. In the screenshot below, we 
selected Detroit ZIP Codes from the left window and Detroit Counties from the right 
window to create crosswalks between the grids for both directions.  
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The calculation may process slowly depending on the size and resolution of your grid 
cells. If you have to interrupt the process, simply click Cancel Operation. It is 
recommended to highlight the grid definition with higher resolution from the left 
window and the one with lower resolution from the right window. This will speed up 
the calculation. 
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Appendix A. Monitor Rollback Algorithms   

This Appendix details the algorithms BenMAP-CE calculates when you perform a 
“monitor rollback.” The monitor rollback adjusts the air quality monitoring data to 
reflect hypothetical changes in air pollution in a given location. The program allows you 
to roll back the monitoring data using three approaches: Percentage, Increment, and 
Rollback to Standard.   

Once a set of monitors has been selected, the user may define one or more non-
overlapping rollback regions. A region is simply an area in which you perform a 
specified rollback. Three rollback types are available:   

• Percentage Rollback. Monitor values are reduced the same percentage.   

• Incremental Rollback. Monitor values are changed by the same fixed increment.   

• Rollback to a Standard. Monitor values are reduced so that attainment of a specified 
standard is reached.   

Each of these rollback types has different rollback parameters associated with it. 

A.1 Percentage Rollback   
Percentage Rollback involves setting only two parameters - a percentage and a 
background level. The rollback procedure is similarly straightforward - each 
observation at each monitor in the region has the portion of its value which is above 
background level reduced by percentage.   

Example: Background Level: 35; Percentage: 25   

Initial Observations at a monitor in rollback region: 

  20 20  25  59  35  51  83  35  30  67  87  79  63  35  35   

If we select the background level of 35, we first calculate the portion of each 
observation that is above background level, that is, we subtract the background level 
from the initial observation level. Observations below background level are given a 
value of 0.   

Observation portions above background level: 

  0 0 0 24  0 16  48  0 0 32  52  44  28  0 0  

When we apply the rollback percentage, each observation portion gets reduced by 25%.  
Reduced portions above background level:  

0 0 0 18  0 12  36  0 0 24  39  33  21  0 0   
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Then, each reduced portion is added to the background level of 35. Zero values are 
replaced by the initial observations.  Reduced Observations: 

  20  20  25  53  35  47  71  35  30  59  74  68  56  35  35   

A.2 Incremental Rollback   
Incremental Rollback similarly involves setting only two parameters - an increment 
and a background level. The rollback procedure is quite similar to the percentage 
rollback procedure - each observation at each monitor in the region has the portion of 
its value which is above background level reduced by increment. The reduced values 
are not allowed to become negative, however. That is, the values are truncated at zero.  
Example: Background Level: 35; Increment: 25 Initial Observations: 

  20  20  25  59  35  51  83  35  30  67  87  79  63  35  35   

Observation portions above background level: 

  0 0 0 24  0 16  48  0 0 32  52  44  28  0 0  

Reduced portions above background level: 

  0 0 0 0 0 0 23  0 0 7 27  19  3 0 0  

Reduced Observations: 

  20  20  25  35  35  35  58  35  30  42  62  54  38  35  35   

A.3 Rollback to a Standard   
Rollback to a Standard has two groups of parameters - those associated with the 
Attainment Test, which determines whether a monitor is in attainment (meets the 
standard), and those associated with the Rollback Methods, which are used to bring 
out of attainment monitors into attainment.  

The Attainment Test parameters are Metric, Ordinality, and Standard. A monitor is 
considered in attainment if the nth highest value of the metric specified by Metric is at 
or below the value specified by Standard, where n is the value specified by Ordinality. 
For example, if Metric is “TwentyFourHourDailyAverage,” Ordinality is two, and 
Standard is eighty-five, a monitor will be considered in attainment if the second 
highest value of TwentyFourHourDailyAverage is at or below eighty-five.   

Supported metrics for pollutants with hourly observations (Ozone) include 
FiveHourDailyAverage, EightHourDailyAverage, TwelveHourDailyAverage, 
TwentyFourHourDailyAverage, OneHourDailyMax, and EightHourDailyMax. Supported 
metrics for pollutants with daily observations (PM2.5) include 
TwentyFourHourDailyAverage and AnnualAverage. For Annual Average, Ordinality 
does not apply, since there is only a single metric value to work with.   



 Appendix B: Air Pollution Exposure Estimation Algorithms   

BenMAP-CE User’s Manual Appendices March 2023 
A-3 

The Rollback Method parameters are Interday Rollback Method, Interday 
Background Level, Intraday Rollback Method, and Intraday Background Level. 
These four parameters determine the rollback procedures used to bring out of 
attainment monitors into attainment. The Interday Rollback Method and 
Background Level are used to generate target values for the metric specified by the 
Attainment Test. The Intraday Rollback Method and Background Level are used to 
adjust hourly observations to meet the target metric values generated in the previous 
step. As such, the Intraday Rollback Method and Background Level are used only for 
pollutants with hourly observations (ozone).  

A.3.1 Interday Rollback – Generating Target Metric Values  

Because standards are defined on metrics, not directly on observations, the first step in 
rolling back out-of-attainment monitors is generating target metric values. There are 
three supported rollback methods for Interday Rollbacks: Percentage, Incremental, and 
Peak Shaving. Each of these rollback methods requires some preprocessing of the initial 
monitor metric values. We will discuss this preprocessing first, and then go through 
Percentage, Incremental, and Peak Shaving rollbacks in turn. 

The Interday Background Level specifies the portion of each metric value which cannot 
be affected by human intervention - we call this portion the non-anthropogenic portion. 
Whatever portion is left over after subtracting out the background level is referred to as 
the anthropogenic portion. The anthropogenic portion of the initial monitor metric 
values is the only part which will be affected by the Interday Rollback Method.   

BenMAP calculates an out of attainment value by determining the particular monitor 
metric value which caused the monitor to be out of attainment - this value is the nth 
highest value of the metric specified by the Attainment Test metric, where n is the 
Attainment Test ordinality. BenMAP then calculates an anthropogenic out of attainment 
value by subtracting the Interday Background Level from the out of attainment value. 
BenMAP also calculates an anthropogenic standard by subtracting the Interday 
Background Level from the Attainment Test standard. Finally, BenMAP calculates a set 
of anthropogenic metric values and a set of non-anthropogenic metric values using the 
following procedure on each initial monitor metric value:  

IF the metric value is less than or equal to the Interday Background Level,   

non-anthropogenic metric value = metric value   

anthropogenic metric value = 0   

ELSE   

non-anthropogenic metric value = Interday Background Level   

anthropogenic metric value = metric value - Interday Background Level    
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A.3.1.1 Interday Rollback – Percentage  

To generate target metric values using Percentage rollback, BenMAP calculates the 
percentage required to reduce the anthropogenic out of attainment value to exactly 
meet the anthropogenic standard. This percentage reduction is then applied to all of the 
anthropogenic metric values. Finally, these reduced anthropogenic metric values are 
added to the non-anthropogenic metric values to give the final target metric values.   

Example:   

Initial Metric Values: 

  30  35  50  100 80  44  67  88  90  70  50  30  55  90  80  85  
 

Attainment Test: Highest value of metric  ≤70   

Interday Background Level: 40   

Out of Attainment Value: 100   

Anthropogenic Out of Attainment Value: 60 (= 100 - 40)   

Anthropogenic Standard: 30 (= 70 - 40)   

Percentage Reduction Required: 50% (=(60-30)/60)    

Non-Anthropogenic Metric Values: 

  30  35  40  40  40  40  40  40  40  40  40  30  40  40  40  40   

Anthropogenic Metric Values: 

  0 0 10  60  40  4 27  48  50  30  10  0 15  50  40  45   

Reduced Anthropogenic Metric Values: 

  0 0 5 30  20  2 14  24  25  15  5 0 8 25  20  23   

Target Metric Values: 

  30  35  45  70  60  42  54  64  65  55  45  30  48  65  60  63   

A.3.1.2 Interday Rollback – Incremental  

To generate target metric values using Incremental Rollback, BenMAP calculates the 
increment required to reduce the anthropogenic out of attainment value to exactly the 
anthropogenic standard. This incremental reduction is then applied to all of the 
anthropogenic metric values (but they are not allowed to fall below zero). Finally, these 
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reduced anthropogenic metric values are added to the non-anthropogenic metric values 
to give the final target metric values.   

Example:   

Initial Metric Values: 

  30  35  50  100  80  44  67  88  90  70  50  30  55  90  80  85  

Attainment Test: Highest value of metric ≤ 70   

Interday Background Level: 40   

Interday Rollback Method: Incremental   

Out of Attainment Value: 100   

Anthropogenic Out of Attainment Value: 60   

Anthropogenic Standard: 30 (=70 - 40)   

Incremental Reduction Required: 30    

 

Non-Anthropogenic Metric Values: 

  30  35  40  40  40  40  40  40  40  40  40  30  40  40  40  40   

Anthropogenic Metric Values: 

  0 0 10  60  40  4 27  48  50  30  10  0 15  50  40  45   

Reduced Anthropogenic Metric Values: 

  0 0 0 30  10  0 0  18  20  0  0 0 0 20  10  15   

Target Metric Values: 

  30  35  40  70  50  40  4  58  60  40  40  30  40  60  50  55   

A.3.1.3 Interday Rollback - Peak Shaving   

To generate target metric values using Peak Shaving rollback, BenMAP simply truncates 
all anthropogenic metric values at the anthropogenic standard. These reduced 
anthropogenic metric values are added to the non-anthropogenic metric values to give 
the final target metric values.  Example:  Initial Metric Values: 

  30  35  50  100  80  44  67  88  90  70  50  30  55  90  80  85   
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Attainment Test: Highest value of metric <= 70   

Interday Background Level: 40   

Interday Rollback Method: Peak Shaving   

Anthropogenic Standard: 30    

 

Non-Anthropogenic Metric Values: 

  30  35  40  40  40  40  40  40  40  40  40  30  40  40  40  40   

Anthropogenic Metric Values: 

  0 0 10  60  40  4 27  48  50  30  10  0 15  50  40  45   

Reduced Anthropogenic Metric Values: 

  0 0 10  30  30  4 27  30  30  30  10  0 15  30  30  30  

Target Metric Values: 

  30  35  50  70  70  44  67  70  70  70  50  30  55  70  70  70  

A.3.2 Intraday Rollback - Adjusting Hourly Observations   

Once a set of target metric values has been calculated for a pollutant with hourly 
observations (e.g., Ozone), BenMAP must adjust the hourly observations so that they 
produce the target metric values. There are two supported rollback methods for 
Intraday Rollback – Percentage and Incremental. Each of these rollback methods 
requires some preprocessing of the initial monitor observations, and each can require 
multiple iterations to hit the target metric values.   

We will discuss this preprocessing and iteration first, and then go through Percentage 
and Incremental rollbacks in turn. 

For various reasons, each of the Intraday Rollback methods can fail to hit the target 
metric values during a single pass through the rollback procedure (these will be 
discussed in detail below). As such, each of the rollback methods uses an iterative 
approach to get within a threshold of each of the target metric values - currently this 
threshold is 0.05. The iterative approach works as follows:   

For each target metric value, BenMAP calculates the current value of the Attainment 
Test metric. For the first iteration, the metric value will be calculated using unadjusted 
hourly observations. For subsequent iterations, the metric value will be calculated using 
the current values of the adjusted hourly observations.   
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If the difference between the metric value and the target metric value is less than or 
equal to 0.05, the rollback procedure is finished. Otherwise, another iteration is 
required.   

The Intraday Background Level specifies the portion of each observation which cannot 
be affected by human intervention - we call this portion the non-anthropogenic portion. 
Whatever portion is left over after subtracting out the background level is referred to as 
the anthropogenic portion. The anthropogenic portion of the initial monitor 
observations is the only part which will be affected by the Intraday Rollback Method.   

In a way analogous to the Interday Rollback procedure, BenMAP calculates the twenty-
four hourly anthropogenic observations and the twenty-four hourly non-anthropogenic 
observations using the following procedure for each hourly observation:   

IF the current value of the observation is less than or equal to the Intraday 
Background Level,   

non-anthropogenic observation = observation   

anthropogenic observation = 0   

ELSE  

non-anthropogenic observation = Intraday Background Level   

anthropogenic observation = observation - Intraday Background Level    

Given (i) an Attainment Test Metric (e.g., EightHourDailyMax), (ii) an Intraday 
Background Level, and (iii) a target metric value for the day, BenMAP proceeds to 
adjust hourly observations in the following steps:   

1.  Calculate the Attainment Test metric (e.g., the 8-hour daily maximum);   

2.  Identify the “window” - i.e., the set of hours used to calculate the metric (e.g., if the 
8-hour daily maximum is achieved in the first 8 hours, then the window is 
comprised of the first 8 hours);   

3.  Calculate the non-anthropogenic hourly observations (=min(hourly observation, 
Intraday Background Level));   

4.  Calculate the anthropogenic hourly observations (=hourly observation - Intraday 
Background Level);   

5.  Calculate the non-anthropogenic metric value (= the metric using the non-
anthropogenic hourly observations in the “window”);   

6.  Calculate the anthropogenic metric value (= the metric using the anthropogenic 
hourly observations in the “window”);   
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7.  Calculate the anthropogenic target metric value (= the target metric value minus the 
non- anthropogenic metric value);   

8.  Calculate the reduction required to get the anthropogenic metric value down to the 
anthropogenic target metric value;   

9.  Adjust all anthropogenic hourly observations by the reduction calculated on the 
previous step;   

10. Calculate the adjusted hourly observations (= the adjusted anthropogenic hourly 
observation + the non-anthropogenic hourly observation).  

A.3.2.1  Intraday Rollback - Percentage   

Below, we present two examples of a percentage-based Intraday Rollback. In one 
example, a single iteration is needed, and in the second example, two iterations are 
required because a number of the monitor values fall below the assumed background 
level.   

A.3.2.1.1  Example: All Hourly Observations Exceed the Intraday Background (Single 
Iteration)   

If all of the hourly observations in a day are greater than the Intraday Background 
Level, then the above procedure is straightforward and can be accomplished in a single 
iteration. We illustrate with the following example. Suppose that:   

Metric = EightHourDailyMax,   

Target metric value for a given day = 85   

Intraday Background Level = 40.   

And that the hourly observations on that day are: 

530  45  50  60  45  45  45  60  70  100  100  100  100   

100  100  100  100  60  45  50  45  45  47  47    

Based on these observations, we see that the 8-hour daily maximum = 110.   

Assuming a background level of 40, then the Anthropogenic hourly observations are: 

490  5 10  20  5 5 5 20  30  60  60  60  60  60   

60  60  60  20  5 10  5 5 7 7  

Then, we know:   

Anthropogenic metric value = 70.   
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Non-anthropogenic metric value = 40.   

Anthropogenic target metric value = 45.   

Percentage reduction required = ((70-45)/70) = 35.7%    

All of the hourly anthropogenic observations are reduced by 35.7%. The average of the 
first 8 values (the window on which the Test metric is based) will be exactly 45, the 
anthropogenic target metric value. Finally, the adjusted hourly observations are 
calculated by adding the non- anthropogenic hourly observation to the adjusted hourly 
anthropogenic observations.   

A.3.2.1.2 Example: Some Hourly Observations are Below the Intraday Background 
(Multiple Iterations Required)   

In the above example, the anthropogenic target metric value was met on a single 
iteration because all of the hourly observations were greater than the Intraday 
Background Level. In this case, a simple percent reduction of all hourly values will 
produce an average in the window that is equal to the anthropogenic target metric 
value. If some of the hourly observations in a day are less than or equal to the Intraday 
Background Level, however, then BenMAP uses an iterative procedure.  

On each iteration, it adjusts hourly observations using the 10-step method given above. 
It then compares the new metric value to the target metric value. If the difference is less 
than or equal to 0.05 ppb, the rollback procedure is finished. Otherwise, another 
iteration is required. The iterative procedure is illustrated in the following example. 

Suppose that: 

Metric = EightHourDailyMax, 

Target metric value for a given day = 85  

Intraday Background Level = 40.    

Suppose also that the hourly observations on that day are:   

530  20  25  60  35  35  40  60  70  100  100  100  100   

100  100  100  100  60  33  40  30  30  25  20   

Then, we know that the 8-hour daily maximum = 100.6.   

Non-Anthropogenic Hourly Observations, Iteration One: 

40  20  25  40  35  35  40  40  40  40  40 40 

40  40  40  40  40  40  33  40  30  30  25  20    
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Anthropogenic Hourly Observations, Iteration One:   

490  0 0 20  0 0 0 20  30  60  60  60  60  60   

60  60  60  20  0 0 0 0 0 0   

Non-Anthropogenic Metric Value: 34.4  (EightHourDailyMax - calculated over the 
same eight hour window as the initial metric value was calculated over)   

Anthropogenic Metric Value: 66.3   

Anthropogenic Target Metric Value: 50.6   

Percentage Reduction Required: 23.6%    

Reduced Anthropogenic Hourly Observations, Iteration One:   

374  0 0 15  0 0 0 15  23  46  46  46   

46  46  46  46  46  15  0 0 0 0 0 0   

Reduced Hourly Observations, Iteration One:   

414  20  25  55  35  35  40  55  63  86  86  86  86   

86  86  86  86  55  33  40  30  30  25  20   

Reduced Metric Value (EightHourDailyMax): 85.8   

Target Metric Value (EightHourDailyMax): 85    

Non-Anthropogenic Hourly Observations, Iteration Two:   

40  20  25  40  35  35  40  40  40  40  40  40  40   

40  40  40  40  40  33  40  30  30  25  20    

Anthropogenic Hourly Observations, Iteration Two:   

374  0 0 15  0 0 0 15  23  46  46  46  46   

46  46  46  46  15  0 0 0 0 0 0  

Non-Anthropogenic Metric Value: 40  (EightHourDailyMax - calculated over the same 
eight hour window the initial metric value was calculated over)   

Anthropogenic Metric Value: 45.8   

Anthropogenic Target Metric Value: 45   
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Percentage Reduction Required: 1.9%    

Reduced Anthropogenic Hourly Observations, Iteration Two:   

368  0 0 15  0 0 0 15  23  45  45  45  45  45   

45  45  45  15  0 0 0 0 0 0   

Reduced Hourly Observations, Iteration Two:   

408  20  25  55  35  35  40  55  63  85  85  85  85  85   

85  85  85  55  33  40  30  30  25  20   

Reduced Metric Value (EightHourDailyMax): 85   

The above example, in addition to illustrating the Intraday Percentage Rollback, also 
illustrates one reason why the iterative procedure can be necessary. When using the 
EightHourDailyMax metric in the Attainment Test, it is possible for the window over 
which the maximum eight hour average occurs to move after a single pass through the 
rollback procedure. When this happens, it becomes necessary to go through additional 
iterations to hit the target metric value.   

A.3.3  Intraday Rollback - Incremental   

To adjust hourly observations using Incremental rollback, BenMAP calculates the 
increment required to reduce the anthropogenic metric value to exactly the 
anthropogenic target metric value. This incremental reduction is then applied to all of 
the anthropogenic observations (but - they are not allowed to fall below zero). Finally, 
these reduced anthropogenic observations are added to the non-anthropogenic 
observations to give the final reduced observations.   

Example:   

Initial Hourly Observations:   

20  20  25  60  35  35  40  70  35  30  65  90  76   

65  35  35  54  60  33  40  30  30  25  20   

Initial Metric Value (EightHourDailyMax): 60   

Target Metric Value (EightHourDailyMax): 55   

Intraday Background Level: 40   

Intraday Rollback Method: Incremental    
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Non-Anthropogenic Hourly Observations, Iteration One:   

20  20  25  40  35  35  40  40  35  30  40  40  40   

40  35  35  40  40  33  40  30  30  25  20    

 

Anthropogenic Hourly Observations, Iteration One:   

0 0 0 20  0 0 0 30  0 0 25  50  36   

25  0 0 14  20  0 0 0 0 0 0   

Non-Anthropogenic Metric Value (EightHourDailyMax): 38.8  

Anthropogenic Metric Value (EightHourDailyMax): 21.3   

Anthropogenic Target Metric Value (EightHourDailyMax): 16.3   

Incremental Reduction Required: 5.0 

 

Reduced Anthropogenic Hourly Observations, Iteration One:   

0 0 0 15  0 0 0 25  0 0 20  45  31   

20  0 0 9 15  0 0 0 0 0 0   

Reduced Hourly Observations, Iteration One:   

20  20  25  55  35  35  40  65  35  30  60  85  71   

60  35  35  49  55  33  40  30  30  25  20   

Reduced Metric Value (EightHourDailyMax): 56.25   

Target Metric Value (EightHourDailyMax): 55    

 

Non-Anthropogenic Hourly Observations, Iteration Two:   

20  20  25  40  35  35  40  40  35  30  40  40  40   

40  35  35  40  40  33  40  30  30  25  20   

Anthropogenic Hourly Observations, Iteration Two:   
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0 0 0 15  0 0 0 25  0 0 20  45  31   

20  0 0 9 15  0 0 0 0 0 0   

Non-Anthropogenic Metric Value (EightHourDailyMax): 38.8   

Anthropogenic Metric Value (EightHourDailyMax): 17.5   

Anthropogenic Target Metric Value (EightHourDailyMax): 16.3   

Incremental Reduction Required: 1.25   

 

Reduced Anthropogenic Hourly Observations, Iteration Two:   

0 0 0 14  0 0 0 24  0 0 19  44  30   

19  0 0 8 14  0 0 0 0 0 0   

Reduced Hourly Observations, Iteration Two:   

20  20  25  54  35  35  40  64  35  30  59  84  70   

59  35  35  48  54  33  40  30  30  25  20   

Reduced Metric Value (EightHourDailyMax): 55.3   

Target Metric Value (EightHourDailyMax): 55    

This example should actually continue for one further iteration, with a new Incremental 
Reduction of 0.3. This illustrates another reason why the iterative procedure can be 
necessary - for incremental reductions, the prohibition against values becoming 
negative can cause target metric values to not be met. Incremental reductions thus very 
often require multiple iterations.   
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Appendix B. Algorithms for Estimating Air Pollution Exposure  

BenMAP groups counts of individuals into what we refer to as “population grid cells,” 
where the grid cells typically correspond to some type of grid used in an air quality 
model, such as the CMAQ model, or to a grid defined by political boundaries such as the 
counties of the United States. In the United States setup, the program includes 
population counts aggregated to each 12km by 12km grid cell. In the next step, BenMAP 
estimates the air pollution exposure for each grid-cell, thus assuming that people living 
within a particular grid-cell experience the same air pollution levels.   

You have a variety of approaches to estimate the exposure to air pollution for the 
people living within a given population grid-cell. Perhaps the simplest approach is to 
use model data directly, and to assume that the people living within a particular model 
grid-cell experience the level estimated by the model. An alternative approach is to use 
air pollution monitoring data, where you may choose the closest monitor data to the 
center of a grid-cell or take an average of nearby monitors.   

The goal of estimating exposure is to provide the necessary input for concentration-
response functions, so that BenMAP can estimate the impact of air pollution on adverse 
health effects. Table B-1 lists the types of metrics commonly used in concentration-
response functions. In the case of air pollution metrics calculated on a daily basis, such 
as the one-hour maximum and the 24-hour average, it is often the case that there are 
missing days of data. Air quality modeling is often conducted on a subset of the days in 
the year, and air quality monitors often miss a number of observations throughout the 
year.   BenMAP accounts for missing days from different data sources as described 
below. 
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 Table B-1.  Metrics Typically Used in Concentration-Response Functions for Criteria 
Air Pollutants 

Measurement 
Frequency Metric Name Metric Description 

Daily (e.g., PM2.5) Daily Average Daily average 
Annual Average Average of four quarterly averages. The four 

quarters are defined as:  Jan-Mar, April-June, Jul-
Sep, Oct-Dec. 

 Annual Median Median of values throughout the year. 
Hourly (e.g., 
Ozone) 

1-hour Daily Max Highest hourly value from 12:00 A.M. through 
11:59 P.M. 

8-hour Daily Average Average of hourly values from 9:00 A.M. through 
4:59 P.M. 

 12-hour Daily Average Average of hourly values from 8:00 A.M. through 
7:59 P.M. 

 24-hour Daily Average Average of hours from 12:00 A.M. through 11:59 
P.M. 

 

B.1  Direct Modeling  
When using direct modeling data to estimate exposure, BenMAP assumes that the 
people living within a particular air pollution model grid-cell experience the same air 
pollution levels. BenMAP then estimates the air pollution metrics of interest, as defined 
for each pollutant. (See the section on defining pollutants in the Loading Data chapter.)   

Generally, modeling data providing hourly observations are complete for any given day.  
However, it is common to have missing days of modeling data during the course of a 
year. Given the estimated metrics from the available data, BenMAP assumes that the 
missing days have the same values as the seasonal average of available data.  

B.2 Closest Monitor   
When using the closest monitor to represent air pollution levels at a population grid-
cell, BenMAP identifies the center of the population grid-cell, and then chooses the 
monitor that is closest to the center. In the simplest case, BenMAP assigns the closest 
monitor to a population grid-cell, uses the monitoring data to calculate the annual and 
daily air pollution metrics. The annual metrics and daily metrics are then used to 
calculate health effects.   

The figure below presents nine population grid-cells and three monitors, with the focus 
on identifying the monitor closest to grid-cell “E.” In this example, the closest monitor 
happens to be 10 miles away from the center of grid-cell E, and the data from this 
monitor would be used to estimate air pollution levels for the population in this grid-
cell. An analogous procedure would be used to estimate air pollution levels in the other 
grid-cells (A, B, C, D, F, G, H, and I).   
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B.3 Voronoi Neighbor Averaging (VNA)   
Instead of using the single closest monitor to estimate exposure at a population grid-
cell, the VNA algorithm interpolates air quality at every population grid cell by first 
identifying the set of monitors that best “surround” the center of the population grid-
cell. 
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In particular, BenMAP identifies the nearest monitors, or “neighbors,” by drawing a 
polygon, or “Voronoi” cell, around the center of each BenMAP grid cell. The polygons 
have the special property that the boundaries are the same distance from the two 
closest points.  
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BenMAP then chooses those monitors that share a boundary with the center of grid-cell 
“E.” These are the nearest neighbors, BenMAP uses these monitors to estimate the air 
pollution level for this grid-cell.  

 
To estimate the air pollution level in each grid-cell, BenMAP calculates the metrics for 
each of the neighboring monitors, and then calculates an inverse-distance weighted 
average of the metrics. The further the monitor is from the BenMAP grid-cell, the 
smaller the weight.  

In the figure below, the weight for the monitor 10 miles from the center of grid-cell E is 
calculated as follows:  

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡10𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  
1

10
� 1

10 + 1
15 + 1

15 + 1
20�

= 0.35 

The weights for the other monitors would be calculated in a similar fashion. BenMAP 
would then calculate an inverse-distance weighted average for 1995 air pollution levels 
in grid-cell E as follows:   
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Forecast 1995 = 0.35×80 ppb + 0.24×90 ppb+ 0.24×60 ppb + 0.18×100 ppb = 81.2 ppb. 

    

B.4 Fixed Radius   
When using the fixed radius option to represent air pollution levels at a population 
grid-cell, BenMAP identifies all monitors within a specified distance of the center of the 
population grid cell, calculates the metrics at each monitor, and then calculates a 
weighted average of the metrics using the algorithms described for VNA. When no 
monitors are within the specified distance, BenMAP assigns the closest monitor to a 
population grid-cell, and calculates the metrics using the algorithms described for the 
closest monitor approach.   

B.5 Monitor or Model Data with Missing Days  
When estimating air pollution exposure, it will often happen that metrics are missing 
for one or more days in the season or year. To remedy this, BenMAP calculates seasonal 
average values to substitute for missing daily values within each season. When 
combining air pollution metrics from multiple monitors, BenMAP first calculates the 
seasonal average values for the daily metrics, substitutes these for missing values, and 
then performs the user-specified interpolation method, such as VNA. 
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Appendix C. Deriving Health Impact Functions  

This Appendix provides of an overview regarding the health impact functions that 
BenMAP uses to estimate the impact of a change in air pollution on adverse health 
effects. It provides a description of the particular types of health impact functions that 
BenMAP uses.   

The functional form of the relationship between the change in pollutant concentration, 
Δx, and the change in population health response (usually an incidence rate), Δy 
depends on the functional form of the C-R function from which it is derived, and this 
depends on the underlying relationship assumed in the epidemiological study chosen to 
estimate a given effect. For expository simplicity, the following subsections refer simply 
to a generic adverse health effect, “y” and uses particulate matter (PM) as the pollutant - 
that is, Δx = ΔPM - to illustrate how the relationship between Δx and Δy is derived from 
each of several different C-R functions.   

Estimating the relationship between ΔPM and Δy can be thought of as consisting of 
three steps:   

(1) choosing a functional form of the relationship between PM and y (the C-R function),   

(2) estimating the values of the parameters in the C-R function assumed, and   

(3) deriving the relationship between ΔPM and Δy (the health impact function) from the 
relationship between PM and y (the C-R function).   

Epidemiological studies have used a variety of functional forms for C-R functions. Some 
studies have assumed that the relationship between adverse health and pollution is 
best described by a linear form, where the relationship between y and PM is estimated 
by a linear regression in which y is the dependent variable and PM is one of several 
independent variables. Log-linear regression and logistic regression are other common 
forms.   

Note that the log-linear form used in the epidemiological literature is often referred to 
as “Poisson regression” because the underlying dependent variable is a count (e.g., 
number of deaths), believed to be Poisson distributed. The model parameters may be 
estimated by regression techniques but are often estimated by maximum likelihood 
techniques. The form of the model, however, is still log-linear.   

C.1 Overview   
The relationship between the concentration of a pollutant, x, and the population 
response, y, is called the concentration-response (C-R) function. For example, the 
concentration of fine particulate matter (PM2.5) may be in µg/m3 per day, and the 
population response may be the number of premature deaths per 100,000 population 
per day. C-R functions are estimated in epidemiological studies. A functional form is 
chosen by the researcher, and the parameters of the function are estimated using data 
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on the pollutant (e.g., daily levels of PM2.5) and the health response (e.g., daily mortality 
counts). There are several different functional forms, discussed below, that have been 
used to estimate C-R functions. The one most commonly used is the log-linear form, in 
which the natural logarithm of the health response is a linear function of the pollutant 
concentration.   

For the purposes of estimating benefits, we are not interested in the C-R function itself, 
however, but the relationship between the change in concentration of the pollutant, Δx, 
and the corresponding change in the population health response, Δy. We want to know, 
for example, if the concentration of PM2.5 is reduced by 10 µg/m3, how many premature 
deaths will be avoided? The relationship between Δx and Δy can be derived from the C-
R function, as described below, and we refer to this relationship as a health impact 
function.   

Many epidemiological studies, however, do not report the C-R function, but instead 
report some measure of the change in the population health response associated with a 
specific change in the pollutant concentration. The most common measure reported is 
the relative risk associated with a given change in the pollutant concentration. A 
general relationship between Δx and Δy can, however, be derived from the relative risk. 
The relative risk and similar measures reported in epidemiological studies are 
discussed in the sections below. The derivation of the relationship of interest for 
BenMAP - the relationship between Δx and Δy - is discussed in the subsequent sections.  

C.2  Review Relative Risk and Odds Ratio   
The terms relative risk and odds ratio are related but distinct. Table C-1 provides the 
basis for demonstrating their relationship.   

Table C-1. Relative Risk and Odds Ratio Notation 

Exposure 
Fraction of Population Adverse Effect Measure 

Affected Not Affected Relative Risk Odds 
Baseline Pollutant Exposure y0 1-y0 

y0/yc 
y0/(1-yo) 

Control Pollutant Exposure yc 1-yc yc/(1-yc) 
 

The “risk” that people with baseline pollutant exposure will be adversely affected (e.g., 
develop chronic bronchitis) is equal to y0, while people with control pollutant exposure 
face a risk, y0, of being adversely affected. The relative risk (RR) is simply:  

𝑅𝑅𝑅𝑅 =
𝑦𝑦0
𝑦𝑦𝑐𝑐

 

The odds that an individual facing high exposure will be adversely affected is:  

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =
𝑦𝑦0

1 − 𝑦𝑦0
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The odds ratio is then:  

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
� 𝑦𝑦0

1 − 𝑦𝑦0
�

� 𝑦𝑦𝑐𝑐
1 − 𝑦𝑦𝑐𝑐

�
 

This can be rearranged as follows:  

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑦𝑦0
𝑦𝑦𝑐𝑐

× �
1 − 𝑦𝑦𝑐𝑐
1 − 𝑦𝑦0

� = 𝑅𝑅𝑅𝑅 ×  �
1 − 𝑦𝑦𝑐𝑐
1 − 𝑦𝑦0

� 

As the risk associated with the specified change in pollutant exposure gets small (i.e., 
both y0 and yc approach zero), the ratio of (1-yc) to (1-y0) approaches one, and the odds 
ratio approaches the relative risk. This relationship can be used to calculate the 
pollutant coefficient in the C-R function from which the reported odds ratio or relative 
risk is derived, as described below.  

C.3 Linear Model   
A linear relationship between the rate of adverse health effects (incidence rate) and 
various explanatory variables is of the form:  

 𝑦𝑦 = 𝛼𝛼 + 𝛽𝛽 × 𝑃𝑃𝑃𝑃 

where α incorporates all the other independent variables in the regression (evaluated 
at their mean values, for example) times their respective coefficients. The relationship 
between the change in the rate of the adverse health effect from the baseline rate (y0) to 
the rate after control (yc) associated with a change from PM0 to PMc is then:   

∆𝑦𝑦 = 𝑦𝑦0 − 𝑦𝑦𝑐𝑐 = 𝛽𝛽 ∗ (𝑃𝑃𝑃𝑃0 − 𝑃𝑃𝑃𝑃𝑐𝑐) = 𝛽𝛽 ∗ ∆𝑃𝑃𝑃𝑃 

For example, Ostro et al. (1991, Table 5) reported a PM2.5 coefficient of 0.0006 (with a 
standard error of 0.0003) for a linear relationship between asthma and PM2.5 exposure.   

The lower and upper bound estimates for the PM2.5 coefficient are calculated as follows:  

𝛽𝛽𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝛽𝛽 − �1.96 × 𝜎𝜎𝛽𝛽� = 0.0006 − (1.96 × 0.0003) = 1.2 × 10−5 

𝛽𝛽𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝛽𝛽 + �1.96 × 𝜎𝜎𝛽𝛽� = 0.0006 + (1.96 × 0.0003) = 0.00119 

It is then straightforward to calculate lower and upper bound estimates of the change in 
asthma.  

C.4 Log-linear Model  
The log-linear relationship defines the incidence rate (y) as:  
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𝑦𝑦 = 𝐵𝐵 × 𝑒𝑒𝛽𝛽∗𝑃𝑃𝑃𝑃 

Or, equivalently,  

𝑙𝑙𝑙𝑙(𝑦𝑦) = 𝛼𝛼 + 𝛽𝛽 ∗ 𝑃𝑃𝑃𝑃, 

where the parameter B is the incidence rate of y when the concentration of PM is zero, 
the parameter β is the coefficient of PM, ln(y) is the natural logarithm of y, and α = 
ln(B). Other covariates besides pollution clearly affect mortality. The parameter B might 
be thought of as containing these other covariates, for example, evaluated at their 
means. That is,   

𝐵𝐵 = 𝐵𝐵0 × 𝑒𝑒𝛽𝛽1𝑥𝑥1+⋯+𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛  

where Bo is the incidence of y when all covariates in the model are zero, and x1, ... , xn 
are the other covariates evaluated at their mean values. The parameter B drops out of 
the model, however, when changes in y are calculated, and is therefore not important.   

The relationship between ∆PM and ∆y is:   

∆𝑦𝑦 = 𝑦𝑦0 − 𝑦𝑦𝑐𝑐 = 𝐵𝐵�𝑒𝑒𝛽𝛽𝛽𝛽𝛽𝛽0 − 𝑒𝑒𝛽𝛽𝛽𝛽𝛽𝛽𝑐𝑐� 

This may be rewritten as:  

  

where y0 is the baseline incidence rate of the health effect (i.e., the incidence rate before 
the change in PM).   

The change in the incidence of adverse health effects can then be calculated by 
multiplying the change in the incidence rate, ∆y, by the relevant population (e.g., if the 
rate is number per 100,000 population, then the relevant population is the number of 
100,000s in the population).   

When the PM coefficient (β) and its standard error (σβ) are published (e.g., Ostro et al., 
1989), then the coefficient estimates associated with the lower and upper bound may 
be calculated easily as follows: 

𝛽𝛽𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝛽𝛽 − �1.96 × 𝜎𝜎𝛽𝛽� 

𝛽𝛽𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝛽𝛽 + �1.96 × 𝜎𝜎𝛽𝛽�, 

Where the adjustment on the mean of ±1.96 times the standard error produces the 2.5th 
and 97.5th percentiles of the normal distribution, which are used to approximate a 95% 

( )( ) ( )



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confidence interval. These values can be changed to capture different lower and upper 
bounds. 

  

Epidemiological studies often report a relative risk for a given ΔPM, rather than the 
coefficient, β (e.g., Schwartz et al., 1995, Table 4). Recall that the relative risk (RR) is 
simply the ratio of two risks: 

   

Taking the natural log of both sides, the coefficient in the C-R function underlying the 
relative risk can be derived as:  

  

The coefficients associated with the lower and upper bounds (e.g., the 2.5th and 97.5th 
percentiles) can be calculated by using a published confidence interval for relative risk, 
and then calculating the associated coefficients.   

Because of rounding of the published RR and its confidence interval, the standard error 
for the coefficient implied by the lower bound of the RR will not exactly equal that 
implied by the upper bound, so an average of the two estimates is used. The underlying 
standard error for the coefficient (σβ) can be approximated by: 

   

  

  

C.5 Logistic Model  
In some epidemiological studies, a logistic model is used to estimate the probability of 
an occurrence of an adverse health effect. Given a vector of explanatory variables, X, 
the logistic model assumes the probability of an occurrence is:  
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where β is a vector of coefficients. Greene (1997, p. 874) presents models with 
discrete dependent variables, such as the logit model. See also Judge et al. (1985, p. 
763). This may be rewritten as:  

 

The odds of an occurrence is:  

  

  

⇒ 𝑙𝑙𝑙𝑙(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) = 𝑋𝑋 × 𝛽𝛽 

The odds ratio for the control scenario (oddsc) versus the baseline (odds0) is then:  

  

The change in the probability of an occurrence from the baseline to the control (Δy), 
assuming that all of the other covariates remain constant, may be derived from this 
odds ratio: 
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When the coefficient (β) and its standard error (σβ) are published (e.g., Pope et al., 
1991, Table 5), then the coefficient estimates associated with the lower and upper 
bound may be calculated easily as follows: 

  
𝛽𝛽𝑙𝑙𝑙𝑙𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝛽𝛽 − �1.96 × 𝜎𝜎𝛽𝛽� 

𝛽𝛽𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝛽𝛽 + �1.96 × 𝜎𝜎𝛽𝛽�, 

where the adjustments to the mean of plus or minus 1.96 times the standard error 
represent the 2.5th and 97.5th percentiles of the normal distribution, and are used to 
approximate a 95% confidence interval. These values can be changed to capture 
different lower and upper bounds. 

Often the logistic regression coefficients are not published, and only the odds ratio 
corresponding to a specified change in PM is presented (e.g., Schwartz et al., 1994). It is 
easy to calculate the underlying coefficient as follows: 

𝑙𝑙𝑙𝑙(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = 𝛽𝛽 × ∆𝑃𝑃𝑃𝑃 
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⇒ 𝛽𝛽 =
𝑙𝑙𝑙𝑙(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)

∆𝑃𝑃𝑃𝑃
 

   

The coefficients associated with the lower and upper bound estimates of the odds ratios 
are calculated analogously.  The underlying standard error for the coefficient (σβ) can 
be approximated by: 

   

  

  

Sometimes, however, the relative risk is presented. The relative risk does not equal the 
odds ratio, and a different procedure should be used to estimate the underlying 
coefficient. Note that ESEERCO (1994, p. V-21) calculated (incorrectly) the underlying 
regression coefficient for Abbey et al. (1993, Table 5) by taking the logarithm of the 
relative risk and dividing by the change in TSP.   

The relative risk (RR) is simply:  

  

where y0 is the risk (i.e., probability of an occurrence) at the baseline PM exposure and 
yc is the risk at the control PM exposure.  When the baseline incidence rate (y0) is given, 
then it is easy to solve for the control incidence rate (yc):  

  

The odds ratio, may then be calculated: 
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Given the odds ratio, the underlying coefficient (β) may be calculated as before:  

  

The odds ratio and the coefficient calculated from it are dependent on the baseline and 
control incidence rates. Unfortunately, it is not always clear what the baseline and 
control incidence rates should be. Abbey et al. (1995b, Table 2) reported that there are 
117 new cases of chronic bronchitis out of a sample of 1,631, or a 7.17 percent rate. In 
addition, they reported the relative risk (RR = 1.81) for a new case of chronic bronchitis 
associated with an annual mean concentration “increment” of 45 µg/m3 of PM2.5 
exposure.   

Assuming that the baseline rate for chronic bronchitis (y0) should be 7.17 percent, the 
question becomes whether the “increment” of 45 µg/m3 should be added to or 
subtracted from the existing PM2.5 concentration. If added, the control incidence rate 
(yc) would be greater than the baseline rate (y0), while subtraction would give a control 
rate less than the incidence rate. In effect, one might reasonably derive two estimates of 
the odds ratio:  

   

  

  

  

An alternative is to simply assume that the relative risk (1.81) is reasonably close to the 
odds ratio and calculate the underlying coefficient. It is easy to show that the relative 
risk equals:   
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Assuming that:  

   

  

It is then possible to calculate the underlying coefficient:  

  

  

Since this coefficient estimate is based on the assumption that 

   , 

it should be used in a C-R function that maintains this assumption. In effect, it should be 
applied to a log-linear C-R function: 

   

Using the formula for the change in the incidence rate and assuming a 10 µg/m3 decline 
in PM2.5, it is shown that this results in changes within the bounds suggested by the two 
estimates based on using the estimated odds ratios:  
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In this instance, it seems that simply using the relative risk to estimate the underlying 
coefficient results in a good approximation of the change in incidence. Since it is unclear 
which of the two other coefficients (β1 or β2) should be used - as the published work 
was not explicit - the coefficient based on the relative risk and the log-linear functional 
form is a reasonable approach.  

C.6 Cox Proportional Hazards Model  
Use of a Cox proportional hazards model in an epidemiological study results in a C-R 
function that is log-linear in form. It is often used to model survival times, and as a 
result, this discussion focuses on mortality impacts.   

The Cox proportional hazards model is based on a hazard function, defined as the 
probability that an individual dies at time t, conditional on having survived up to time t 
(Collet, 1994, p. 10). More formally, the hazard function equals the probability density 
function for the risk of dying divided by one minus the cumulative probability density 
function: 

  

The proportional hazards model takes the form: 

 , 

where X is a vector of explanatory variables, β is a vector of coefficients, and h0(t) is the 
so- called “baseline hazard” rate. This terminology differs from that used in most of this 
discussion: this “baseline hazard” is the risk when all of the covariates (X) are set to 
zero; this is not the risk in the baseline scenario.   

The Cox proportional hazards model is sometimes termed a “semi-parametric” model, 
because the baseline hazard rate is calculated using a non-parametric method, while the 
impact of explanatory variables is parameterized. Collet (1994) details the estimation of 
Cox proportional hazards models; in particular, see Collet’s discussion (pp. 95-97) of 
nonparametric estimation of the baseline hazard.   

Taking the ratio of the hazard functions for the baseline and control scenarios gives the 
relative risk:  

,  

where it is assumed that the only difference between the baseline and control is the 
level of PM pollution.   
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The relative risk is often presented rather than the coefficient β, so it is necessary to 
estimate β in order to develop the functional relationship between ∆PM and ∆y, as 
described previously for log-linear C-R functions. 
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Appendix D. Health Incidence & Prevalence Data in U.S. Setup  

Health impact functions developed from log-linear or logistic models estimate the 
percent change in an adverse health effect associated with a given pollutant change. In 
order to estimate the absolute change in incidence using these functions, we need the 
baseline incidence rate of the adverse health effect. And for certain health effects, such 
as asthma exacerbation, we need a prevalence rate, which estimates the percentage of 
the general population with a given ailment like asthma. This appendix describes the 
data used to estimate baseline incidence and prevalence rates for the health effects 
considered in this analysis.   

D.1 Mortality   
This section describes how we developed county mortality rates for the years 2015 
through 2050 to use in BenMAP. First, we describe the source of 2012-2014 baseline 
mortality data and how we calculated county-level mortality rates. We then describe 
how we used national-level Census mortality rate projections to develop county-level 
mortality rate projections for years 2015-2060.   

D.1.1 Mortality Data for 2012-2014   

We obtained county-level mortality and population data from 2012-2014 for 11 causes 
for the contiguous United States by downloading the data from the Centers for Disease 
Control (CDC) WONDER database (http://wonder.cdc.gov).  

Since the detailed mortality data obtained from CDC do not include population, we 
combined them with U.S. Census Bureau population estimates exported from BenMAP. 
We then generated age-, cause-, and county-specific mortality rates using the following 
formula:   

𝑅𝑅𝑖𝑖,𝑗𝑗,𝑘𝑘 = 𝐷𝐷𝑖𝑖,𝑗𝑗,𝑘𝑘(2012)+𝐷𝐷𝑖𝑖,𝑗𝑗,𝑘𝑘(2013)+𝐷𝐷𝑖𝑖,𝑗𝑗,𝑘𝑘(2014)
𝑃𝑃𝑖𝑖,𝑘𝑘(2012)+𝑃𝑃𝑖𝑖,𝑘𝑘(2013)+𝑃𝑃𝑖𝑖,𝑘𝑘(2014)   

where Ri,j,k is the mortality rate for age group i, cause j, and county k; D is the death 
count; and P is the population.   

For county-age group cells with fewer than 10 deaths, CDC WONDER suppresses the 
exact death count. For these observations, a mortality rate cannot be calculated. For 
each combination of age group and mortality cause, we used the following procedure to 
deal with suppressed counts. 

For each combination of state, age group and mortality cause, we grouped counties with 
unsuppressed mortality figures and summed their reported death counts. We then 
subtracted these unsuppressed deaths from the state-level age- and cause-specific 
death count, which includes suppressed deaths. We divided the resulting state-wide 
death count in suppressed counties by the age-specific populations in those counties. 
This calculation resulted in an age- and cause- specific average mortality rate for 
suppressed counties; 

http://wonder.cdc.gov/
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𝑅𝑅𝑠𝑠,𝑖𝑖,𝑗𝑗 =
𝐷𝐷𝑇𝑇,𝑖𝑖,𝑗𝑗 − 𝐷𝐷𝑢𝑢,𝑖𝑖,𝑗𝑗

𝑃𝑃𝑠𝑠,𝑖𝑖,𝑗𝑗
 

Where Rs,i,j is the state average suppressed mortality rate for age group i and cause j; 
DT,i,j, is the total state death count for age group i and cause j; Du,i,j is the aggregated 
state-level unsuppressed death count for age group i and cause j; and Ps,i,j is the 
aggregated population for age group i and cause j in suppressed counties. 

In some instances, age- and cause-specific death counts were suppressed at both the 
county and state level. In these cases, we substituted national-level age- and cause-
specific mortality rates for the respective missing county mortality rates. 

Following CDC WONDER (http://wonder.cdc.gov), we treated mortality rates as 
“unreliable” when the death count is less than 20. For each combination of age group 
and mortality cause, we used the following procedure to deal with the problem of 
“unreliable” rates:   

 For a given state, we grouped the counties where the death count was less than 20 and 
summed those death counts across those counties. If the sum of deaths was greater 
than or equal to 20, we then summed the populations in those counties, and calculated a 
single rate for the “state collection of counties” by dividing the sum of deaths by the sum 
of populations in those counties. This rate was then applied to each of those 
“unreliable” counties.   

 If the sum of deaths calculated in the above step was still less than 20, the counties in 
the “state collection of counties” were not assigned the single rate from the above step. 
Instead, we proceeded to the regional level, according to the regional definitions shown 
below in Table D-1. In each region, we identified all counties whose death counts were 
less than 20 (excluding any such counties that were assigned a rate in the previous 
step). We summed the death counts in those counties. If the sum of deaths was greater 
than or equal to 20, we then summed the populations in those counties, and calculated a 
single rate for the “regional collection of counties” by dividing the sum of deaths by the 
sum of populations in those counties. This rate was then applied to each of those 
counties in the “regional collection of counties.”  
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Table D-1.  Regional Definitions from U.S. Census 

Region States Included 
Northeast Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, New York, 

New Jersey, Pennsylvania 
Midwest Ohio, Indiana, Illinois, Michigan, Wisconsin, Minnesota, Iowa, Missouri, North Dakota, 

South Dakota, Nebraska, Kansas 
South Delaware, Maryland, District of Columbia, Virginia, West Virginia, North Carolina, South 

Carolina, Georgia, Florida, Kentucky, Tennessee, Alabama, Mississippi, Arkansas, 
Louisiana, Oklahoma, Texas 

West Montana, Idaho, Wyoming, Colorado, New Mexico, Arizona, Utah, Nevada, Washington, 
Oregon, California, Alaska, Hawaii 

 

If the sum of deaths calculated in the previous (regional) step was still less than 20, the 
counties in the “regional collection of counties” were not assigned the single rate from 
the above step. Instead, we proceeded to the national level, identifying all counties in 
the nation whose death counts were less than 20 (excluding any such counties that 
were assigned a rate in the previous steps). We summed the death counts in those 
counties and divided by the sum of the populations in those counties to derive a single 
rate for the “national collection of counties.” This rate was then applied to each of those 
counties in the “national collection of counties.” In these cases where national 
adjustment still did not yield a death count greater than 20, we simply calculated a 
single rate for the “national collection of counties, even though it was “unreliable,” and 
assigned it to those counties in the “national collection of counties.”  
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 Table D-2.  National Mortality Rates (per 100 people per year)  
by Health Endpoint and Age Group, 2012-2014 

Mortality 
Category 

ICD-10 
codes Infant* 1-17 18-24 25-34 35-44 45-54 55-64 65-74 75-84 85+ 

Mortality, 
All Cause 

All 0.59396 0.01951 0.07804 0.10665 0.17264 0.40542 0.86162 1.79670 4.62837 13.58034 

Mortality, 
Non-
Accidental 

A00-R99 0.55495 0.00949 0.01874 0.04112 0.10876 0.33084 0.79395 1.73208 4.49595 13.20867 

Mortality, 
Respiratory 

J00-J98 0.01297 0.00102 0.00127 0.00253 0.00570 0.02013 0.06560 0.20585 0.57827 1.42362 

Mortality, 
Chronic 
Lung 

J40-J47, J67 0.00053 0.00032 0.00040 0.00074 0.00186 0.01033 0.04045 0.13873 0.36008 0.68593 

Mortality, 
Lung 
Cancer 

C34 0.00002 0.00001 0.00007 0.00033 0.00282 0.02378 0.07992 0.19701 0.32952 0.31820 

Mortality, 
Ischemic 
Heart 
Disease 

I20-I25 0.00033 0.00004 0.00039 0.00234 0.01242 0.04854 0.12174 0.25698 0.68000 2.27271 

Mortality, 
Cardio-
Pulmonary 

I00-I78, 
J10-J18, 

J40-J47, J67 

0.00539 0.00069 0.00099 0.00214 0.00502 0.01794 0.05877 0.18453 0.51055 1.26213 

Mortality, 
NCD + LRI 

** 0.18459 0.00618 0.01168 0.02751 0.08129 0.26214 0.63767 1.37694 3.44731 9.47467 

Mortality, 
Lower 
Respiratory 
Infection 

A48.1, A70, 
B97.4-

B97.6, J09-
J15.8, J16, 
J20-J21, 
P23.0-

P23.4, U04 

0.00269 0.00618 0.01168 0.00030 0.00062 0.00112 0.00196 0.00300 0.00758 0.02693 

Mortality, 
Cerebro-
vascular 

G45-G46.8, 
I60-I63.9, 
I65-I66.9, 

I67.0-I67.3, 
I67.5-I67.6, 
I68.1-I68.2, 
I69.0-I69.3 

0.00116 0.00012 0.00034 0.00096 0.00314 0.00809 0.01455 0.02892 0.08553 0.20863 

Mortality, 
COPD 

J40-J44, J47 0.00048 0.00005 0.00004 0.00015 0.00102 0.00904 0.03888 0.13689 0.35661 0.67457 

*We estimate post-neonatal mortality (deaths after the first month) for infants because the health impact 
function (see Appendix E) estimates post-neonatal mortality. Neonatal deaths were removed from the infant 
mortality total, and total infant population was used as the denominator in post-neonatal mortality incidence. 
**For a full list of codes for non-communicable diseases (NCD) and lower respiratory infections (LRI), see the 
IHME GBD Code mapping: http://ghdx.healthdata.org/record/ihme-data/gbd-2017-cause-icd-code-
mappings.  

 
D.1.2 Mortality Rate Projections 2015-2060 

To estimate age- and county-specific mortality rates in years 2015 through 2060, we 
calculated annual adjustment factors, based on a series of Census Bureau projected 
national mortality rates (for all- cause mortality), to adjust the age- and county-specific 

http://ghdx.healthdata.org/record/ihme-data/gbd-2017-cause-icd-code-mappings
http://ghdx.healthdata.org/record/ihme-data/gbd-2017-cause-icd-code-mappings
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mortality rates calculated using 2012-2014 data as described above. We used the 
following procedure:   

For each age group, we obtained the series of projected national mortality rates from 
2013 to 2050 (see the 2013 rate in Table D-3) based on Census Bureau projected life 
tables.   

We then calculated, separately for each age group, the ratio of Census Bureau national 
mortality rate in year Y (Y = 2014, 2015, ..., 2060) to the 2013 rate. These ratios are 
shown for selected years in Table D-4.   

Finally, to estimate mortality rates in year Y (Y = 2015, 2020, ..., 2060) that are both age-
group-specific and county-specific, we multiplied the county- and age-group-specific 
mortality rates for 2012-2014 by the appropriate ratio calculated in the previous step. 
For example, to estimate the projected mortality rate in 2015 among ages 18-24 in 
Wayne County, MI, we multiplied the mortality rate for ages 18-24 in Wayne County in 
2012-2014 by the ratio of Census Bureau projected national mortality rate in 2015 for 
ages 18-24 to Census Bureau national mortality rate in 2013 for ages 18-24.  

Table D-3. All-Cause Mortality Rate (per 100 people per year),  
by Source, Year, and Age Group 

Source & Year Infant 1-17 18-24 25-34 35-44 45-54 55-64 65-74 75-84 85+ 

Calculated CDC 
2012-2014 0.193* 0.020 0.078 0.107 0.173 0.405 0.862 1.797 4.628 13.580 

Census Bureau 
2013** 0.654 0.029 0.088 0.102 0.183 0.387 0.930 2.292 5.409 13.091 

* The Census Bureau estimate is for all deaths in the first year of life. BenMAP uses post-neonatal mortality 
(deaths after the first month, i.e., 0.23 per 100 people) because the health impact function (see Appendix E) 
estimates post- neonatal mortality. For comparison purpose, we also calculated the rate for all deaths in the 
first year, which is 0.684 per 100 people).   

**For a detailed description of the model, the assumptions, and the data used to create Census Bureau 
projections, see the working paper, “Methodology and Assumptions for the 2012 National Projections,” which 
is available on http://www.census.gov/population/projections/files/methodology/methodstatement12.pdf    

Table D-4. Ratio of Future Year All-Cause Mortality Rate to 2013 Estimated All-
Cause Mortality Rate, by Age Group 

Year Infant 1-17 18-24 25-34 35-44 45-54 55-64 65-74 75-84 85+ 

2015 0.93 0.93 0.96 1.02 0.96 0.96 1.01 1.02 1.03 1.00 

2020 0.94 0.94 0.98 1.04 0.97 0.98 1.02 1.03 1.03 1.00 

2025 0.85 0.81 0.74 0.80 0.75 0.77 0.85 0.91 0.93 0.97 

2030 0.81 0.75 0.66 0.70 0.67 0.69 0.78 0.86 0.89 0.92 

2035 0.76 0.70 0.58 0.62 0.60 0.62 0.71 0.81 0.87 0.87 

2040 0.73 0.65 0.51 0.53 0.53 0.56 0.64 0.76 0.84 0.86 
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2045 0.70 0.60 0.45 0.46 0.46 0.50 0.58 0.71 0.80 0.86 

2050 0.67 0.56 0.39 0.40 0.40 0.44 0.53 0.66 0.77 0.87 

2055 0.64 0.52 0.34 0.35 0.35 0.39 0.48 0.62 0.73 0.88 

2060 0.61 0.48 0.30 0.30 0.31 0.34 0.43 0.58 0.70 0.87 
 

D.1.3 Ethnicity-Stratified Mortality Incidence 

To estimate ethnicity-stratified and age-stratified incidence rates at the county level, we 
downloaded all-cause and respiratory mortality data from 2007 to 2016 from the CDC 
WONDER mortality database (https://wonder.cdc.gov/). Ethnicity-stratified incidence 
rates were calculated for the following age groups: < 1 year, 1-4 years, 5-14 years, 15-
24 years, 25-34 years, 35-44 years, 45-54 years, 55-64 years, 65-74 years, 75-84 years, 
and 85+ years. We stratified county-level data by two groups, Hispanic and non-
Hispanic, and did not stratify further by race due to suppression constraints.  

We followed the methods outlined in section D.1.1 to deal with suppressed and 
unreliable data, with one notable difference in methodology; we included an 
intermediate spatial scale between county and state for imputation purposes. We 
designated urban and rural counties within each state using CDC WONDER and, where 
possible, imputed missing data using the state-urban and state-rural classifications 
before relying on broader statewide data. We followed methods for dealing with 
suppressed and unreliable data at each spatial scale as described in section D.1.1. 

D.1.4 Ethnicity-Stratified Mortality Projections (2020-2060) 

Baseline ethnicity-stratified mortality rates were derived from county-level CDC 
WONDER data for 2007-2016 (see section D.1.3). In order to project these rates into 
future years, we procured national-level mortality projections from the U.S. Census 
Bureau. These projections cover the years 2017 to 2060. Because county-level mortality 
projections are not readily available, we apply the national rates of change to the 
baseline county values. In addition, we bridge the temporal gap between the 2007-2016 
period—treated as a 2011 average—and the 2017-onwards projection using historical 
CDC WONDER data for 2011 to 2017. 

 

 

 

https://wonder.cdc.gov/
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Table D-5. Datasets Used in Developing Ethnicity-Stratified Incidence Rates (2020-
2060) 

Initial Baseline Dataset CDC WONDER Cause of Death 
Dataset - for adjustment to 2017 

Census Bureau 
Population 
Projection   

Census Bureau 
Deaths Projections 

Years: 2007-2016  
Ages: < 1 year, 1-4 years, 5-
14 years, 15-24 years, 25-34 
years, 35-44 years, 45-54 
years, 55-64 years, 65-74 
years, 75-84 years, and 85+ 
years  
Spatial scale: County-level  
 

Years: 2011, 2012, 2017  
Ages: < 1 year, 1-4 years, 5-14 
years, 15-24 years, 25-34 years, 
35-44 years, 45-54 years, 55-64 
years, 65-74 years, 75-84 years, 
and 85+ years  
Spatial scale: Census regions  

Years: 2017-2060  
Ages: 0, 1, 2,…99, 
100  
Spatial scale: 
National  
 

Years: 2017-2060  
Ages: 0, 1, 2, …84, 
85+  
Spatial scale: 
National 

 
D.1.4.1 Adjusting Baseline Dataset to 2017 Using CDC WONDER Historical Data 

First, the baseline dataset was adjusted to 2017 values using historical data from CDC 
WONDER’s Underlying Cause of Death dataset (https://wonder.cdc.gov/ucd-
icd10.html). All-cause mortality datasets were pulled for years 2011, 2012, and 2017, 
for Hispanic and Non-Hispanic groups. Data was aggregated from the Census Region to 
a national level. Values for years 2011 and 2012 were averaged together to represent 
the midpoint of the 2007 to 2016 baseline rates. A scaling factor was calculated 
between the 2011-2012 average and 2017 values. These scaling factors (Table D-6) 
were applied to the original, county-level baseline mortality rates to adjust the dataset 
to represent 2017 mortality incidence.   

Table D-6. Ratio of 2017 to 2011-2012 All-Cause Mortality Rate 

Start Age End Age Hispanic Non-Hispanic 

0 0 1.003709 0.933217 

1 4 0.857753 0.941917 

5 14 1.006885 1.067448 

15 24 1.141657 1.101791 

25 34 1.282166 1.261146 

35 44 1.162141 1.147084 

45 54 0.988912 0.998058 

55 64 0.987971 1.049693 

65 74 0.970447 0.983404 

75 84 0.947003 0.951082 

85 99 0.939672 0.996925 
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D.1.4.2 Projecting Dataset into 2060 Using Census Bureau Projections 

To project this adjusted 2017 baseline dataset into the future, we used a similar process 
to the methods described in Section D.1.2. We obtained Census Bureau projected deaths 
and population for 2017-2060 at the national level and adjusted the age groups to 
match between datasets. The Census Bureau datasets were stratified by ethnicity 
(Hispanic and Non-Hispanic). We calculated all-cause mortality rates by dividing 
projected deaths by projected population.   

We then calculated, separately for each age group and ethnicity group combination, the 
ratio of the Census Bureau national mortality rate in year Y (Y= 2017, 2018, …2060) to 
the 2017 rate. These ratios are shown for a selection of years and age groups in Table 
D-7.   

Table D-7. Ratio of Future All-Cause Mortality Rate to 2017 Estimated All-Cause 
Mortality Rate 

Ethnicity  Year  Age Group  
0-0  5-14  25-34  45-54  65-74  85-99  

Hispanic  2020  0.98  0.97  0.94  0.94  0.97  0.99  
2030  0.93  0.89  0.76  0.82  0.88  0.92  
2040  0.87  0.79  0.61  0.70  0.80  0.87  
2050  0.82  0.71  0.48  0.59  0.73  0.86  
2060  0.77  0.63  0.38  0.49  0.66  0.86  

Non-Hispanic  2020  0.97  0.96  0.93  0.93  0.97  1.00  
2030  0.87  0.82  0.69  0.71  0.86  0.91  
2040  0.79  0.72  0.52  0.57  0.75  0.86  
2050  0.72  0.62  0.40  0.45  0.63  0.86  
2060  0.65  0.54  0.30  0.36  0.56  0.87  

 

Finally, the ratios displayed in Table D-7 were used to develop projected mortality 
datasets on the county level stratified by ethnicity (Hispanic and Non-Hispanic) for 
years 2020, 2025, … 2055, 2060. We multiplied each county’s incidence value with the 
scaling ratio corresponding to its specific age group and ethnicity for years 2020-2060.   

D.1.5 Race-Stratified Mortality Incidence 

To estimate race-stratified and age-stratified incidence rates at the county level, we 
downloaded all-cause and respiratory mortality data from 2007 to 2016 from the CDC 
WONDER mortality database (https://wonder.cdc.gov/). Race-stratified incidence rates 
were calculated for the following age groups: < 1 year, 1-4 years, 5-14 years, 15-24 
years, 25-34 years, 35-44 years, 45-54 years, 55-64 years, 65-74 years, 75-84 years, and 
85+ years.40 To address the frequent county-level data suppression for race-specific 

 
40 Infant mortality dates for race- and ethnicity-stratified datasets do not currently exclude neonatal deaths. 

https://wonder.cdc.gov/
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death counts, we stratified the county-level data into two broad race categories, White 
and Non-White. In a later step, we stratified the non-White incidence rates by race 
(Black, Asian, Native American) using the relative magnitudes of incidence values by 
race at the regional level, described in more detail below. We also included an 
intermediate spatial scale between county and state designating urban and rural 
counties for imputation purposes, described in detail in section D.1.3. 

A pooled non-White incidence rate inherently underestimates the mortality risk for 
some race groups and overestimates mortality risk for others. To estimate county-level 
mortality rates by individual race (Black, Asian, Native American), we applied regional 
race-specific incidence relationships to the county-level pooled non-White incidence 
rates. We calculated a weighted average of race-specific incidence rates using regional 
incidence rates for each region/age/race group normalized to one reference population 
(the Asian race group) and county population proportions based on race-specific 
county populations from CDC WONDER where available. In cases of population 
suppression across two or more races per county, we replaced all three race-specific 
population proportions derived from CDC WONDER with population proportions 
derived from 2010 Census data in BenMAP-CE. 

D.1.6 Race-Stratified Mortality Projections (2020-2060) 

The methods for projecting race-stratified mortality incidence rates are comparable to 
those described in section D.1.4 for ethnicity-stratified rates. The only difference 
includes mapping different definitions of race across datasets, as summarized in Table 
D-8. Due to existing population configurations in BenMAP-CE, the mortality projections 
were adjusted to match the limited set of racial groups currently in the tool.  
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  Table D-8. Census Bureau Projections Racial Groups 

Census Bureau Population 
Projections 

Census Bureau Deaths 
Projections 

Existing Definitions in  
BenMAP-CE 

Definition 1  
1. White alone  
2. Black alone  
3. American Indian and 

Alaska Native alone   
4. Asian alone  
5. Native Hawaiian and 

Other Pacific Islander 
alone  

6. Two or more races  
 
Definition 2  

1. White alone or in 
combination  

2. Black alone or in 
combination  

3. American Indian and 
Alaska Native alone or in 
combination  

4. Asian alone or in 
combination  

5. Native Hawaiian and 
Other Pacific Islander 
alone or in combination 

Definition 1 
1. White alone 
2. Black alone 
3. American Indian and 

Alaska Native alone 
4. Asian alone 
5. Native Hawaiian and 

Other Pacific Islander 
alone 

6. Two or more races  

1. White 
2. Black 
3. Native American 
4. Asian 

 

As can be seen in Table D-8, the racial categories available in the Census Bureau 
projections data do not match those already in BenMAP-CE. Most notably, (1) the Native 
Hawaiian and Other Pacific Islander alone population is not aggregated with Asian alone 
as is done in BenMAP-CE; and (2) Two or more races is separated into its own racial 
group. To map the Census Bureau data into BenMAP-CE definitions, the following steps 
were taken.   

First, the population dataset was used to find proportions to re-assign death and 
population counts in the Two or more races group to the five other racial groups:   

1. The White alone count was subtracted from the White alone or in combination count 
to find the aggregate number of those that were considered multiracial, who 
included “White” in their racial identity. This is referred to as the “combination 
count.” This was completed for each racial group.  

2. The “combination counts” for each racial group were added together, to give the 
total counts by those in the Two or more races group. This total is larger than the 
size of the Two or more races group itself, since individuals selected multiple races.  
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3. Each “combination count” per racial group was divided by the total combination 
count to create a proportion. This proportion represents the aggregate proportion 
of combination counts out of all combination counts for a racial group.  

4. These proportions were used to assign deaths and population counts in the Two or 
more races group to the other five groups.   

Example:  

(Two or more races total * Proportion for White group) + White alone = White 
population  

Finally, the death and population counts for the Native Hawaiian and Other Pacific 
Islander group was added to the Asian group.   

The resulting mortality scaling ratios are shown for select years and age groups in 
Table D-9.   

  Table D-9. Ratio of Future All-Cause Mortality Rate to 2017 Estimated All-Cause 
Mortality Rate 

Race  Year  
Age Group  

0-0  5-14  25-34  45-54  65-74  85-99  

Asian  

2020  0.98  0.99  0.95  0.95  0.98  0.97  
2030  0.92  0.83  0.76  0.82  0.90  0.88  
2040  0.86  0.72  0.63  0.72  0.82  0.83  
2050  0.80  0.63  0.51  0.60  0.76  0.84  
2060  0.75  0.56  0.41  0.51  0.72  0.82  

Black  

2020  0.95  0.94  0.92  0.91  0.95  0.98  
2030  0.79  0.77  0.66  0.67  0.80  0.89  
2040  0.66  0.63  0.47  0.52  0.66  0.82  
2050  0.56  0.52  0.34  0.40  0.54  0.82  
2060  0.47  0.43  0.24  0.30  0.46  0.83  

Native 
American  

2020  0.96  0.96  0.92  0.90  0.94  0.98  
2030  0.83  0.80  0.67  0.69  0.79  0.89  
2040  0.72  0.68  0.49  0.55  0.66  0.83  
2050  0.63  0.58  0.37  0.43  0.56  0.83  
2060  0.56  0.50  0.27  0.34  0.49  0.84  

White  

2020  0.98  0.97  0.93  0.93  0.97  1.01  
2030  0.92  0.86  0.70  0.73  0.85  0.91  
2040  0.86  0.76  0.54  0.59  0.74  0.86  
2050  0.81  0.68  0.42  0.47  0.64  0.86  
2060  0.76  0.61  0.32  0.38  0.57  0.87  
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D.2 Hospitalizations  
Hospitalization rates were calculated using data from the Healthcare Cost and 
Utilization Project (HCUP). HCUP is a family of health care databases developed through 
a Federal-State-Industry partnership and sponsored by the Agency for Healthcare 
Research and Quality (AHRQ). HCUP products include the State Inpatient Databases 
(SID), the State Emergency Department Databases (SEDD), the Nationwide Inpatient 
Sample (NIS), and the Nationwide Emergency Department Sample (NEDS). HCUP 
databases can be obtained from the following data services:   

HCUP Central Distributor: Many of the HCUP databases are available for purchase 
through the HCUP Central Distributor. The databases include detailed information for 
individual discharges, such as primary diagnosis (in ICD-9 codes), patient’s age and 
residence county. HCUP categorizes hospital admissions in various ways. 
Hospitalization admissions are reported as emergency (admitted from the emergency 
department), urgent (admitted from another hospital), elective (admitted from another 
health facility, including long-term care), newborn (admitted for delivery), trauma (not 
used by all states), or other/missing/invalid.  While a substantial subset of the ISA-
identified literature evaluating respiratory hospitalizations restricted analyses to 
emergency hospital admissions (EHAs), all hospital admission baseline incidence data 
within BenMAP reflects total hospital admissions due to time constraints limiting the 
ability to stratify incidence by admission type. In general, the vast majority of 
respiratory and cardiovascular hospitaizations appear to be emergency or urgent 
admissions. As such, the total hospital admissions rates in BenMAP should largely align 
with analogous EHA rates (albeit biased upward due to the small share of 
hospitalizations that are elective). 

 HCUP State Partners: Some HCUP participating states do not release their data to the 
Central Distributor; however, the data may be obtained through contacting the State 
Partners. South Carolina provided county-level data. 

 HCUPnet: This is a free, on-line query system based on data from HCUP. It provides 
access to summary statistics at the state, regional and national levels.   

Figure D-1 shows the level of hospitalization data (e.g, discharge-level or state-level) for 
each state. Note that for some states neither discharge-level, county-level nor state-
level data were available. In such cases we used regional statistics from HCUPnet to 
estimate hospitalization rates for those states. The data year for states using HCUPnet 
data is 2014. For discharge-level data, the data year for most states is 2014; however, 
some states provided data for 2011 (CA, MS); 2012 (ME); and 2013 (AR, MA, MD, NV, 
SD, UT). We assume hospitalization rates are reasonably constant from 2011-2014 and 
consider all as 2014 rates.  
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Figure D-1. Hospitalization Data from HCUP   

 
More information about HCUP can be found at http://www.hcup-us.abrq.gov/ 

The procedures for calculating hospitalization rates are summarized as follows:   

 For states with discharge-level data:   

o We calculated age-, health endpoint-, and county-specific hospitalization 
counts. South Carolina was the only state that, while not providing discharge-
level data, did provide county-level data for each age group-endpoint 
combination.   

o The above calculation excluded hospitalizations with missing patient age or 
county FIPS, which may lead to underestimation of rates. Therefore, we 
scaled up the previously calculated age-, endpoint-, and county-specific 
counts using an adjustment factor obtained as follows:   

 We first counted the number of discharges for a specific endpoint in the 
state including those discharges with missing age or county FIPS.   

http://www.hcup-us.abrq.gov/
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 We then counted the number of discharges for the endpoint in the state 
excluding those records with missing age or county FIPS.   

 The adjustment factor is the ratio of the two counts. 

o For California and West Virginia, patient county was unavailable for all 
observations. For these two states, we used hospital county in place of 
patient county. 

o For health outcomes deemed acute (acute myocardial infarction; 
cerebrovascular events; stroke; pneumonia; lower respiratory infection; 
acute cases of asthma), we distributed patients within the hospital state in 
cases where the patient resided out of state. We assume that everyone 
admitted to the hospital in a given state developed that acute condition while 
in that state. 

o We calculated hospitalization rates for each county by dividing the adjusted 
county-level hospitalization counts by the Census estimated county-level 
population for the corresponding year (2011 - 2014). Following CDC 
Wonder, we treated rates as “unreliable” when the hospitalization count was 
less than 20, using the same procedure we used for mortality rates (see 
Section D.1.1).   

For states with summarized state statistics (from HCUPnet) we calculated the state-, 
age-, endpoint- specific hospitalization rates and applied them to each county in the 
state. We used the previously described procedure to adjust the “unreliable” rates.   

 For states without discharge-level or state-level data:   

o We obtained the endpoint-specific hospitalization counts in each region from 
HCUPnet/NIS (we refer to this count for the ith endpoint in the jth region as 
“TOTALij”)   

o For those states in the jth region that do have discharge-level or state-level 
data, we summed the hospital admissions by endpoint (we refer to this count 
for the ith endpoint in the jth region as “SUB ij”).   

o We then estimated the hospitalization count for states without discharge or 
state data for the ith endpoint in the jth region as TOTALij - SUB ij. Note that 
while this count is endpoint- and region- specific, it is not age-specific. We 
obtained the distribution of hospital admission counts across age groups 
based on the Central Distributor data and assumed the same distribution for 
the HCUPnet hospitalizations. We then applied this distribution to the 
estimated hospital counts (i.e., TOTALij - SUB ij) to obtain endpoint-, region-, 
and age-specific counts.  
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o Using the corresponding age- and region-specific populations in BenMAP-CE 
from Woods and Poole (2015), we calculated age-specific hospitalization 
rates for the ith endpoint in the jth region and applied them to those counties 
in the region that didn’t have discharge-level or state-level data.   

The endpoints in hospitalization studies are defined using different combinations of ICD 
codes. Rather than generating a unique baseline incidence rate for each ICD code 
combination, for the purposes of this analysis, we identified a core group of 
hospitalization rates from the studies and applied the appropriate combinations of 
these rates in the health impact functions:   

• congestive heart failure (ICD-9 428)   

• dysrhythmia (ICD-9 427)   

• heart rhythm disturbances (ICD-9 426-427)   

• acute myocardial infarction (ICD-9 410)   

• ischemic heart disease - 1 (ICD-9 410-414)   

• ischemic heart disease - 2 (ICD-9 410-414, 429)   

• ischemic heart disease (less myocardial infarction) (ICD-9 411-414)  

• all cardiovascular (ICD-9 390-429)   

• all cardiovascular (less myocardial infarctions) (ICD-9 390-409, 411-429)   

• cardiovascular, cerebrovascular and peripheral vascular diseases (ICD-9 410-414, 
429, 426-427, 428, 430-438, 440-449)   

• all cardiac outcomes (ICD-9 390-459)   

• cerebrovascular events (ICD-9 430-438)  

• stroke (ICD-9 431-437)   

• peripheral vascular disease - 1 (ICD-9 440-448) 

• peripheral vascular disease - 2 (ICD-9 440-449)   

• all respiratory (ICD-9 460-519) 

• respiratory illness - 1 (ICD-9 466, 480-486, 490-493)  

• respiratory illness -2 (ICD-9 464-466, 480-487, 490-492)   
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• chronic lung disease (ICD-9 490-496)   

• chronic lung disease (less asthma) (ICD-9 490-492, 494-496)   

• chronic lung disease (less asthma) -2 (ICD-9 490-492, 494, 496)   

• chronic lung disease (less asthma) -3 (ICD-9 490-492)   

• chronic lung disease (less asthma) -4 (ICD-9 491,492, 494, 496)   

• pneumonia (ICD-9 480-486)  

• asthma (ICD-9 493)   

• lower respiratory infection (ICD-9 466.1, 466.0, 480-487, 490, 510-511)  

• respiratory – 1 (ICD-9 491, 492, 493, 496) 

• respiratory – 2 (ICD-9 464-466, 480-487, 490-492, 493) 

• alzheimer’s disease (ICD-9 331.0) 

• parkinson’s disease (ICD-9 332) 

In addition to the hospitalization endpoints above, we developed a set of county level 
baseline incidence for one EHA endpoint, All Respiratory (see Section E.7.8 for 
epidemiological description). We generated the EHA rates by applying the HCUPnet 
national ratio of All Respiratory hospitalizations originating from the emergency 
department (77%) to the county level incidence rates developed from the discharge 
and state-level data.  

For each C-R function, we selected the baseline rate or combination of rates that most 
closely matches to the study endpoint definition. For studies that define chronic lung 
disease as ICD 490- 492, 494-496, we subtracted the incidence rate for asthma (ICD 
493) from the chronic lung disease rate (ICD 490-496). In some cases, the baseline rate 
will not match exactly to the endpoint definition in the study. For example, Burnett et al. 
(2001) studied the following respiratory conditions in infants <2 years of age: ICD 
464.4, 466, 480-486, 493. For this C-R function we apply an aggregate of the following 
rates: ICD 464, 466, 480-487, 493. Although they do not match exactly, we assume that 
relationship observed between the pollutant and study-defined endpoint is applicable 
for the additional codes. Table D-10 presents a summary of the national hospitalization 
rates for 2014 from HCUP.  
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Table D-10. Hospitalization Rates (per 100 people per year), by Health Endpoint 
and Age 

Hospitalization 
Category 

ICD-9 
Code 

Age  
0-1 2-17 18-24 25-34 35-44 45-54 55-64 65-74 75-84 85+ 

Respiratory            
All Respiratory 460-519 2.387 0.363 0.166 0.212 0.340 0.737 1.297 2.292 4.151 6.343 

Pneumonia 480-486 0.477 0.101 0.039 0.063 0.103 0.196 0.336 0.640 1.426 2.660 

Chronic Lung 
Disease 490-496 0.226 0.151 0.041 0.056 0.105 0.281 0.496 0.837 1.276 1.306 

Asthma 493 0.217 0.147 0.036 0.048 0.076 0.123 0.136 0.157 0.218 0.243 

Cardiovascular            
All Cardiovascular 390-429 0.044 0.017 0.061 0.138 0.377 0.914 1.747 3.131 5.886 8.832 

Acute Myocardial 
Infarction, Nonfatal 410 0.000 0.000 0.002 0.010 0.068 0.202 0.380 0.575 0.921 1.332 

Ischemic Heart 
Disease 410-414 0.000 0.000 0.002 0.014 0.105 0.350 0.689 1.090 1.570 1.734 

Dysrhythmia 427 0.016 0.005 0.014 0.025 0.057 0.145 0.319 0.684 1.357 1.917 

Congestive Heart 
Failure 428 0.010 0.001 0.005 0.021 0.061 0.165 0.344 0.700 1.727 3.513 

Stroke 431-437 0.009 0.003 0.007 0.021 0.070 0.199 0.417 0.816 1.639 2.488 

Neurological 

Alzheimer’s 
Disease 331.0 0.000 0.000 0.00 0.00 0.00 0.0004 0.0035 0.027 0.129 0.248 

Parkinson’s 
Disease 332 0.000 0.000 0.00011 0.0037 0.020 0.025 

 

D.3 Nonfatal Heart Attacks  
The relationship between short-term particulate matter exposure and heart attacks was 
quantified in a case-crossover analysis by Peters et al. (2001). The study population was 
selected from heart attack survivors in a medical clinic. Therefore, the applicable 
population to apply to the C-R function is all individuals surviving a heart attack in a 
given year. Several data sources are available to estimate the number of heart attacks 
per year. For example, several cohort studies have reported estimates of heart attack 
incidence rates in the specific populations under study. However, these rates depend on 
the specific characteristics of the populations under study and may not be the best data 
to extrapolate nationally. The American Heart Association reports approximately 
785,000 new heart attacks per year (Roger et al., 2012). Exclusion of heart attack 
deaths reported by CDC Wonder yields approximately 575,000 nonfatal cases per year.   

An alternative approach to the estimation of heart attack rates is to use data from the 
Healthcare Cost and Utilization Project (HCUP), assuming that all heart attacks that are 
not instantly fatal will result in a hospitalization. Details about HCUP data are described 
in Section D.2.  According to the 2014 HCUP data there were approximately 608,795 
hospitalizations due to heart attacks (acute myocardial infarction: ICD-9 410, primary 
diagnosis). We used rates based on HCUP data over estimates extrapolated from cohort 
studies because the former is a national database with a larger sample size, which is 
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intended to provide reliable national estimates. The incidence rate calculation is also 
described in Section D.2 and the incidence rates for AMI hospitalization are presented 
in Table D-10.   

Rosamond et al. (1999) reported that approximately six percent of male and eight 
percent of female hospitalized heart attack patients die within 28 days (either in or 
outside of the hospital). We, therefore, applied a factor of 0.93 to the estimated number 
of PM-related acute myocardial infarctions to exclude the number of cases that result in 
death within the first month. Note that we did not adjust for fatal AMIs in the incidence 
rate estimation, due to the way that the epidemiological studies are designed. Those 
studies consider total admissions for AMIs, which includes individuals living at the time 
the studies were conducted. Therefore, we use the definition of AMI that matches the 
definition in the epidemiological studies.   

D.4 Emergency Department Visits   
The data source for emergency department/room (ED or ER) visits is also HCUP, i.e., 
SID, SEDD, and NEDS. And the types of data providers are also the same as those 
described in Section D.2. Figure D-2 shows the emergency department data in each 
state.  
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 Figure D-2. Emergency Department Data from HCUP 

   
The calculation of ER visit rates is also similar to the calculation of hospitalization rates, 
except for the following differences:   

 The SEDD databases include only those ER visits that ended with discharge. To identify 
the ER visits that ended in hospitalization, we used a variable called “admission source” 
in the SID databases. Admission source identified as “emergency room” indicates that 
the hospital admission came from the ER - i.e., the ER visit ended in hospitalization. For 
each combination of age group, endpoint and county, we summed the ER visits that 
ended with discharge and those that resulted in hospitalization.   

 The data year varies across the states from 2011 to 2014; we assumed that ER visit 
rates are reasonably constant across these three years and consider them as 2014 rates.   

 Instead of using HCUPnet/NIS in the last step as described in Section D.2., we used 
HCUPnet/NEDS to calculate ER visit rates for states without discharge level or state 
level data. Table D-11 presents the estimated asthma emergency room rates by health 
endpoint and age group.  
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Table D-11. Emergency Department Visit Rates (per 100 people per year) by Health 
Endpoint and Age Group  

Emergency 
Department 

Category ICD-9 Codes Age 0-17 18-24 25-34 35-44 45-54 55-64 65-74 75-84 85+ 

Asthma 493 0.959 0.601 0.556 0.538 0.552 0.408 0.331 0.368 0.350 

Respiratory 

491-493, 460-
466, 477.0-477.9, 

480-486, 496, 
786.07, 786.09 

6.069 3.214 2.837 2.332 2.447 2.418 2.908 4.382 5.651 

Cardiovascular 

410-414, 427-
428, 433-437, 

440.0-440.9, 443-
445, 451-453 

0.030 0.107 0.212 0.496 1.151 2.023 3.451 6.726 11.028 

All Cardiac 
Outcomes 390-459 0.067 0.314 0.568 1.105 2.021 3.086 4.921 9.345 14.596 

 

D.5 School Loss Days   
Epidemiological studies have examined the relationship between air pollution and a 
variety of measures of school absence. These measures include: school loss days for all 
causes, illness- related, and respiratory illness-related. We have two sources of 
information. The first is the National Center for Education Statistics, which provided an 
estimate of all-cause school loss days, and the other is the National Health Interview 
Survey (Adams et al., 1999, Table 47), which has data on different categories of acute 
school loss days. Table D-12 presents the estimated school loss day rates. Further detail 
is provided below on these rates.  

Table D-12. School Loss Day Rates (per student per year) 

Type Northeast Midwest South West 

Respiratory illness-related absences 1.3 1.7 1.1 2.2 

Illness-related absences 2.4 2.6 2.6 3.7 

All-cause 9.9 9.9 9.9 9.9 
* We based illness-related school loss day rates on data from the 1996 NHIS and an estimate of 180 
school days per year. This excludes school loss days due to injuries. We based the all-cause school loss 
day rate on data from the National Center for Education Statistics.  

All-Cause School Loss Day Rate   

Based on data from the U.S. Department of Education (1996, Table 42-1), the National 
Center for Education Statistics estimates that for the 1993-1994 school year, 5.5 
percent of students are absent from school on a given day. This estimate is comparable 
to study-specific estimates from Chen et al. (2000) and Ransom and Pope (1992), which 
ranged from 4.5 to 5.1 percent.   
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Illness-Related School Loss Day Rate   

The National Health Interview Survey (NHIS) has regional estimates of school loss days 
due to a variety of acute conditions (Adams et al., 1999). NHIS is a nationwide sample-
based survey of the health of the noninstitutionalized, civilian population, conducted by 
NCHS. The survey collects data on acute conditions, prevalence of chronic conditions, 
episodes of injury, activity limitations, and self-reported health status. However, it does 
not provide an estimate of all-cause school loss days.   

In estimating illness-related school loss days, we started with school loss days due to 
acute problems (Adams et al., 1999, Table 47) and subtracted lost days due to injuries, 
in order to match the definition of the study used in the C-R function to estimate illness-
related school absences (Gilliland et al., 2001). We then divided by 180 school days per 
to estimate illness- related school absence rates per school day. Similarly, when 
estimating respiratory illness-related school loss days, we use data from Adams et al. 
(1999, Table 47). Note that we estimated 180 school days in a year to calculate 
respiratory illness-related school absence rates per year.   

D.6 Other Acute and Chronic Effects  
For many of the minor effect studies, baseline rates from a single study are often the 
only source of information, and we assume that these rates hold for locations in the U.S. 
The use of study- specific estimates are likely to increase the uncertainty around the 
estimate because they are often estimated from a single location using a relatively small 
sample. These endpoints include: acute bronchitis, chronic bronchitis, upper 
respiratory symptoms, lower respiratory symptoms. Table D-13 presents a summary of 
these baseline rates.  

Table D-13. Selected Acute and Chronic Incidence (Cases / Person-Year) & 
Prevalence (Percentage Population) 

Endpoint Age Parameter Rate Source 

Acute Bronchitis 8-12 Incidence 0.043 American Lung Association (2002b, 
Table 11) 

Chronic Bronchitis 27+ Incidence 0.00378 Abbey et al. (1993, Table 3) 

Chronic Bronchitis 

18+ 

Prevalence 

4.37% American Lung Association (2010a, 
Table 4). The rate numbers may be 

slightly different from those in Table 
4 because we received more current 

estimates form ALA. 

18-44 3.15% 

45-64 5.49% 

65+ 5.63% 

Lower Respiratory 
Symptoms (LRS) 7-14 Incidence 0.483 Schwartz et al. (1994, Table 2) 

Minor Restricted Activity 
Days (MRAD) 18-64 Incidence 7.8 Ostro and Rothschild (1989, p. 243) 

Work Loss Day (WLD) 18-64 Incidence 2.172 Adams et al. (1999, Table) U.S. 
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Endpoint Age Parameter Rate Source 

18-24 1.971 Bureau of the Census (1997, No.22) 

25-44 2.475 

45-64 1.796 

NOTE: The incidence rate is the number of cases per person per year. Prevalence refers to the fraction of 
people that have a particular illness during a particular time period.   

D.6.1  Acute Bronchitis   

The annual rate of acute bronchitis for children ages 5 to 17 was obtained from the 
American Lung Association (2002b, Table 11). The authors reported an annual 
incidence rate per person of 0.043, derived from the 1996 National Health Interview 
Survey.    

D.6.2 Chronic Bronchitis Incidence Rate   

The annual incidence rate for chronic bronchitis41 is estimated from data reported by 
Abbey et al. (1993, Table 3). The rate is calculated by taking the number of new cases 
(234), dividing by the number of individuals in the sample (3,310), dividing by the ten 
years covered in the sample, and then multiplying by one minus the reversal rate 
(estimated to be 46.6% based on Abbey et al. (1995a, Table 1).   

Age-specific incidence rates are not available. Abbey et al. (1995a, Table 1) did report 
the incidences by three age groups (25-54, 55-74, and 75+) for “cough type” and 
“sputum type” bronchitis. However, they did not report an overall incidence rate for 
bronchitis by age-group. Since, the cough and sputum types of bronchitis overlap to an 
unknown extent, we did not attempt to generate age-specific incidence rates for the 
over-all rate of bronchitis.   

D.6.3 Chronic Bronchitis Prevalence Rate   

We obtained the annual prevalence rate for chronic bronchitis from the American Lung 
Association (2010a, Table 4). Based on an analysis of 2008 National Health Interview 
Survey data, they estimated a rate of 0.0437 for persons 18 and older; they also 
reported the following prevalence rates for people in the age groups 18-44, 45-64, and 
65+: 0.0315, 0.0549, and 0.0563, respectively.   

D.6.4 Lower Respiratory Symptoms  

Lower respiratory symptoms (LRS) are defined as two or more of the following: cough, 
chest pain, phlegm, wheeze. The proposed yearly incidence rate for 100 people, 43.8, is 
based on the percentiles in Schwartz et al. (Schwartz et al., 1994, Table 2). The authors 
did not report the mean incidence rate, but rather reported various percentiles from the 
incidence rate distribution.  The percentiles and associated per person per day values 
are 10th = 0 percent, 25th = 0 percent, 50th = 0 percent, 75th = 0.29 percent, and 90th = 

 
41 Please note that this endpoint is not regularly considered in U.S. EPA analyses (July 2018). 
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0.34 percent. The most conservative estimate consistent with the data are to assume 
the incidence per person per day is zero up to the 75th percentile, a constant 0.29 
percent between the 75th and 90th percentiles, and a constant 0.34 percent between 
the 90th and 100th percentiles. Alternatively, assuming a linear slope between the 50th 
and 75th, 75th and 90th, and 90th to 100th percentiles, the estimated mean incidence 
rate per person per day is 0.12 percent. (For example, the 62.5th percentile would have 
an estimated incidence rate per person per day of 0.145 percent.) We used the latter 
approach in this analysis.  

D.6.5 Minor Restricted Activity Days (MRAD)   

Ostro and Rothschild (1989, p. 243) provide an estimate of the annual incidence rate of 
MRADs per person of 7.8.   

D.6.6 Work Loss Days   

The yearly work-loss-day incidence rate per 100 people is based on estimates from the 
1996 National Health Interview Survey (Adams et al., 1999, Table 41). They reported a 
total annual work loss days of 352 million for individuals ages 18 to 65. The total 
population of individuals of this age group in 1996 (162 million) was obtained from 
(U.S. Bureau of the Census, 1997, No. 22). The average annual rate of work loss days per 
individual is 2.17. Using a similar approach, we calculated work-loss-day rates for ages 
18-24, 25-44, and 45-64, respectively.   

D.7 Asthma-Related Health Effects   
Several studies have examined the impact of air pollution on asthma development or 
exacerbation. Many of the baseline incidence rates used in the health impact functions 
are based on study-specific estimates. The baseline rates for the various endpoints are 
described below and summarized in Table D-14. The prevalence of asthma is 
summarized in Table D-15.  

Table D-14. Asthma-Related Health Effects Incidence Rates  

Endpoint Age Parameter Rate Source 

New Onset Asthma 0-4 Incidence 0.0234 

Winer et al. (2012, Table 1 
& Table 2) 

New Onset Asthma 5-11 Incidence 0.0111 

New Onset Asthma 12-17 Incidence 0.0044 

New Onset Asthma 18-34 Incidence 0.0040 

New Onset Asthma, Women 35-44 Incidence 0.0051 

New Onset Asthma, Women 45-54 Incidence 0.0046 

New Onset Asthma, Women 55-64 Incidence 0.0059 

New Onset Asthma, Women 65+ Incidence 0.0039 

Asthma Exacerbation, Shortness 
of Breath, African American 8-13 Prevalence 7.40% Ostro et al. (2001, p. 202) 
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Endpoint Age Parameter Rate Source 

Asthma Exacerbation, Wheeze, 
African American 8-13 Prevalence 17.30% 

Asthma Exacerbation, Cough, 
African American 8-13 Prevalence 14.50% 

Asthma Symptoms, Shortness of 
Breath 5-12 Prevalence 18.50% 

Lewis et al. (2013, p. 51) 
Asthma Symptoms, Wheeze 5-12 Prevalence 19.40% 

Asthma Symptoms, Cough 5-12 Prevalence 30.10% 

Asthma Symptoms, Chest 
Tightness 5-12 Prevalence 12.70% 

Asthma Symptoms (Albuterol 
Use), Albuterol Use 6-13 Incidence 2.2 Rabinovitch et al. (2006, 

Table 1) 

Upper Respiratory Symptoms 
(URS) 9-11 Incidence 124.79 Pope et al. (1991, Table 2) 

  

D.7.1 New Onset Asthma  

The annual rate of new asthma onset is estimated from Winer et al. (2012, Table 1 and 
Table 2). Winer et al., 2012 identify newly diagnosed asthma from the 2006-2008 
Asthma Call-Back Survey (ACBS) and Behavioral Risk Factor Surveillance System 
(BRFSS) as individuals diagnosed by a doctor, or other health professional, within the 
12 months prior to the surveys.  

D.7.2 Shortness of Breath  

To estimate the annual rate of new shortness of breath episodes among African-
American asthmatics, ages 8-13, we used the rate reported by Ostro et al. (2001, p.202). 
To estimate the annual rate of new shortness of breath episodes among asthmatic 
children ages 5-12, we used the rate reported by Lewis et al. (2013, p.51).   

D.7.3 Wheeze   

The daily rate of new wheeze episodes among African-American asthmatics, ages 8-13, 
is reported by Ostro et al. (2001, p.202) as 0.076. We multiplied this value by 100 and 
by 365 to get the annual incidence rate per 100 people.  To estimate the annual rate of 
new wheeze episodes among asthmatic children ages 5-12, we used the rate reported 
by Lewis et al. (2013, p.51).   

D.7.4 Cough   

The daily rate of new cough episodes among African-American asthmatics, ages 8-13, is 
reported by Ostro et al. (2001, p.202) as 0.067. We multiplied this value by 100 and by 
365 to get the annual incidence rate per 100 people. To estimate the annual rate of new 
cough episodes among asthmatic children ages 5-12, we used the rate reported by 
Lewis et al. (2013, p.51).   
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D.7.5 Albuterol Use   

The average number of albuterol inhaler actuations (‘puffs’) per day for an asthmatic 
child, age 6-13, is reported by Rabinovith et al. (2006, Table 1) as 2.2 ‘puffs’ per child 
per day. 

D.7.6 Upper Respiratory Symptoms   

Upper Respiratory Symptoms are defined as one or more of the following: runny or 
stuffy nose; wet cough; burning, aching, or red eyes. Using the incidence rates for upper 
respiratory symptoms among asthmatics, published in Pope et al. (1991, Table 2), we 
calculated a sample size-weighted average incidence rate.   

D.7.7 Asthma Population Estimates   

In studies examining the association between air pollution and the development or 
exacerbation of asthma, often times an estimate of the percent of the population with 
asthma is required. Asthma percentages were obtained from an American Lung 
Association (2010b) report summarizing data from NHIS. Table D-15 presents asthma 
prevalence rates used to define asthmatic populations in the health impact functions.  
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Table D-15. Asthma Prevalence Rates Used to Estimate Asthmatic Populations 

Endpoint 
Population Group 

Asthma 
Prevalence Source 

Asthma Symptoms All Ages 7.80% 

American Lung Association 
(2010b, Table 7) 

<5 6.14% 

<18 9.41% 

5-17 10.70% 

18-44 7.19% 

45-64  7.45% 

65+ 7.16% 

African-American, <5 9.98% American Lung Association 
(2010b, Table 9) African-American, 5 to 17 17.76% 

African-American, <18 15.53% American Lung Association* 

New Onset Asthma** 0-4 3.80% 

National Health Interview 
Survey (2018, Table 4-1) 

5-17 8.93% 

4-17 8.56% 

7-21 9.01% 

Female, 35 to 64 9.90% 

Female, 65+ 10.00% 

Asthma Symptoms 
(Albuterol Use), 
Albuterol Use 

6-13 8.6% 

       * Calculated by ALA for U.S. EPA, based on NHIS data (CDC, 2008).  

       ** Asthma prevalence rates differ for the same age groups due to population weighting 

D.8 Other Health Endpoint Occurrence 
Baseline incidence estimates for health endpoint occurrences other than a 
hospitalization or emergency department visit are described below, listed in 
alphabetical order. 

D.8.1 Allergic Rhinitis   

Prevalence rates of hay fever/rhinitis are presented by Parker et al. (2009). Parker et al. 
investigate the associations between long-term ozone exposure and respiratory 
allergies in children ages 3 to 17 years old. The authors use prevalence data from the 
NHIS household interview survey and define allergic rhinitis as children with reported 
hay fever, respiratory allergy, or both within the 12 months prior to the survey. Of the 
eligible population (72,279), 19.2% of respondents experience allergic rhinitis 
symptoms within the year prior to the survey, therefore, the national prevalence rate of 
hay allergic rhinitis is 0.192. 
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D.8.2 Lung Cancer 

The baseline incidence rates for non-fatal lung cancer were calculated using the existent 
baseline incidence rate for lung cancer mortality in combination with the five-year lung 
cancer survival rate from NCI (2015). We first used the five-year lung cancer survival 
rate to calculate the total incidence of lung cancer (both fatal and non-fatal) from the 
baseline mortality rate using the following formula: baseline mortality rate / (1 – five-
year survival rate). We then calculated the incidence of non-fatal lung cancer as the 
difference between total lung cancer incidence and fatal lung cancer incidence (NCI, 
2015). Table D-16 presents the baseline incidence of lung cancer mortality, the SEER 
five-year survival rate, the estimated total lung cancer incidence, and the estimated 
non-fatal lung cancer incidence rate by age group. 

Table D-16. Lung Cancer Incidence Rates 

Age Group Annual Lung 
Cancer Mortality 

Incidence 
[A] 

Five-Year 
Survival Rate 

[B] 

Total Lung Cancer 
Incidence 

[C] =  
[A] / (1 - [B]) 

Non-fatal Lung 
Cancer Incidence 

[D] = 
[C] – [A] 

25-34 0.0000033 34.6% 0.0000050 0.00000175 
35-44 0.0000282 34.6% 0.0000431 0.00001492 
45-54 0.0002378 22.1% 0.0003053 0.00006746 
55-64 0.0007922 20.8% 0.0010003 0.00020805 
65-74 0.00019701 21.0% 0.0002494 0.00005237 
75-84 0.0032952 14.9% 0.0038722 0.00057695 
85+ 0.0031820 14.9% 0.0037391 0.00055713 

 

D.8.3 Out of Hospital Cardiac Arrest 

The baseline incidence of cardiac arrests occurring outside of the hospital (OHCA) is 
estimated using the incidence and survival rates reported by Daya et al. (2015). Daya et 
al. (2015) utilize Resuscitation Outcomes Consortium data to calculate the incidence 
per 100,000 of OHCA and the survival rate broken down into four age categories, 0 to 
17, 18 to 39, 40 to 64, and 65+. We combined the age-specific incidence and survival 
rates to calculate the baseline incidence for non-fatal OHCA (Table D-17). 

Table D-17. Out of Hospital Cardiac Arrest Incidence and Survival Rates 

Age 
Annual incidence per 

100,000 people Survival Rate 
Annual non-fatal 

incidence per 100 people 

0-17 10.1 8.4% 0.008 

18-39 33.5 9.8% 0.033 

40-64 137.3 14.9% 0.205 

65+ 553.5 8.8% 0.487 
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D.8.4 Stroke 

We developed non-fatal stroke baseline incidence rates using similar data as was 
utilized to develop the non-fatal OHCA incidence rates.  Yao et al. (2019) provide the 
annual incidence of stroke in 2013 for individuals over 65 years old, as well as the 
survival rate, broken down by race, gender, and stroke type (hemorrhagic or ischemic). 
We combined the incidence and survival rates to calculate the rate of non-fatal stroke 
by gender and race. We then calculated the overall annual baseline incidence rate of 
stroke in all individuals over the age of 65 by calculating a weighted averaged from the 
stratified. This resulted in a rate of 0.004 strokes per person per year. Table D-18 
presents the stratified incidence and survival rates.  

Table D-18. Stroke Incidence and Survival Rates 

Characteristic 

Annual incidence per 
100,000 people Survival Rate 

Non-fatal Incidence per 100 people 
per year 

Weight (Study 
Population) Ischemic Hemorrhagic Ischemic Hemorrhagic Ischemic Hemorrhagic Total 

Black Men 551 93 92% 73% 0.00507 0.00068 0.00575  6,155  

White Men 407 75 88% 60% 0.00358 0.00045 0.00403  54,079  

Black Women 641 94 91% 69% 0.00583 0.00065 0.00648  9,819  

White Women 466 77 85% 56% 0.00396 0.00043 0.00439  78,839  

Weighted Average 0.00446  
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Appendix E. Core Particulate Matter Health Impact Functions in 
U.S. Setup   

In this Appendix, we present the core PM-related health impact functions in BenMAP, 
i.e., the functions that, as of the current release, U.S. EPA routinely uses in its regulatory 
analyses. Each sub-section has a table with a brief description of the health impact 
function and the underlying parameters. Following each table, we present a brief 
summary of each of the studies and any items that are unique to the study.   

Note that Appendix C mathematically derives the standard types of health impact 
functions encountered in the epidemiological literature, such as, log-linear, logistic and 
linear, so we simply note here the type of functional form. Appendix D presents a 
description of the sources for the incidence and prevalence data used in each health 
impact function.   

E.1  Long-term Mortality   
There are two types of exposure to PM that may result in premature mortality. Short-
term exposure may result in excess mortality on the same day or within a few days of 
exposure. Long-term exposure over, say, a year or more, may result in annual mortality 
in excess of what it would be if PM levels were generally lower, although the excess 
mortality that occurs will not necessarily be associated with any particular episode of 
elevated air pollution levels. In other words, long-term exposure may capture a facet of 
the association between PM and mortality that is not captured by short-term exposure. 
Table E-1 lists the long-term mortality health impact functions.   

Table E-1. Core Health Impact Functions for Particulate Matter and Long-Term 
Mortality  

Effect Author Year Location Age Co-Poll Metric Beta Std Err Form Notes 

Mortality, 
All Cause 

Di et al. 2017 Nationwide 65-99 O3 Annual 0.007046 0.000095 Log-linear  

Mortality, 
All Cause 

Turner et 
al. 

2016 Nationwide 30-99 O3 Annual 0.005827 0.000963 Log-linear  

Mortality, 
All Cause 

Woodruff 
et al. 

2008 Nationwide 0-0  Annual 0.005603 0.004539 Logistic  

Mortality, 
All Cause 

Pope et al. 2019 Nationwide 18-99  D24Hour
Mean 

0.01133 0.001602 Log-linear  

Mortality, 
All Cause 

Wu et al.  2020 Nationwide 65-99  D24Hour
Mean 

0.00639 0.000383 Log-linear  

 

E.1.1   Di et al. (2017) 

Di et al. (2017) evaluated the relationship between long-term PM2.5 exposure and all-
cause mortality in nearly 61 million U.S. Medicare enrollees (over the age of 64) 
through 460 million person-years of follow-up and roughly 22 million observed deaths. 
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This cohort comprised approximately 15% of the total U.S. population, included people 
living in rural areas, and is one of the largest cohort studies published to date. The 
authors modeled PM2.5 exposure across the contiguous U.S. using a hybrid methodology 
that included land use regression, satellite data, and monitor data, and resolved 
estimations to 1 x 1-kilometer areas. Di et al. (2017) used Cox proportional-hazards 
models with a generalized estimating equation. Adjustment for potential confounding 
by the co-pollutant O3 was performed, which slightly attenuated the relationship 
between PM2.5 and mortality. The authors also performed statistical testing of the 
potential for non-linear effects and concluded that the data supported a nearly-linear 
concentration-response relationship with no signal of a threshold down to at least 5 
µg/m3.   

All-Cause Mortality  

In a two-pollutant model, the coefficient and standard error for PM2.5 are estimated 
from the hazard ratio (1.073) and 95% confidence interval of (1.071-1.075) associated 
with a change in annual mean PM2.5 exposure of 10.0 µg/m3 (Di et al., 2017, Table 2 
Main Analysis, Cox PH with GEE).    

E.1.2   Turner et al. (2016) 

Turner et al. (2016) examined the relationship between long-term PM2.5 exposure 
(1982-2004) and mortality (all-cause, cause-specific) in American Cancer Society 
Cancer Prevention Study-II participants (aged 30-99 years). Estimated PM2.5 

concentrations were obtained using monthly PM2.5 monitor data (1999-2008) and a 
national-level hybrid land use regression (LUR) and Bayesian maximum entropy (BME) 
interpolation model. Turner et al. (2016) utilized random-effects Cox proportional 
hazard models adjusted a priori for individual, socio-demographic, and ecological 
variables. In addition to adjusting for individual-level and ecological covariates, Turner 
et al. (2016) also controlled for occupational PM2.5 exposure and adjusted for the 
potential co-pollutants O3 and nitrogen dioxide.  

All-Cause Mortality  

In a multi-pollutant model, the coefficient and standard error for PM2.5 are estimated 
from the hazard ratio (1.06) and 95% confidence interval of (1.04–1.08) associated 
with a change of 10.0 µg/m3 in the mean PM2.5 exposure level from 1999-2004 (Turner 
et al., 2016, Table E10 HBM PM2.5, MP model, controlling for HBM O3 1982-2004).    

E.1.3   Woodruff et al. (2008) 

Woodruff et al. (2008) examined the relationship between long-term exposure to fine 
PM2.5 air pollution and post-neonatal infant mortality in 3,583,495 births from 96 
counties containing >249,999 residents across the U.S. between 1999-2002 using data 
from the National Center for Health Statistics (NCHS). They linked average PM2.5 
monitoring data over the first two months of life with 6,639 post neonatal deaths, using 
logistic regression that incorporated generalized estimating equations (GEE) to 
estimate the odds ratios for all-cause and cause-specific post-neonatal mortality by 
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exposure to air pollution. The study population experienced a median PM2.5 
concentration of 14.8 µg/m3, with 25% of the population experiencing concentrations 
below 12 µg/m3 and above 18.8 µg/m3. The study included an evaluation of the 
appropriateness of a linear form from analysis based on quartiles of exposure and 
identified the linear form as a reasonable assumption.  

All-Cause Mortality  

In a single-pollutant model, the coefficient and standard error for PM2.5 are estimated 
from the odds ratio (1.04) and 95% confidence interval of (0.98–1.11) associated with a 
change of 7 µg/m3 in the mean PM2.5 exposure level during the first two months of life 
(Woodruff et al., 2008, Table 4 PM2.5 single-pollutant model, all causes). 

E.1.4   Pope et al. (2019) 

Pope et al. (2019) examined the relationship between long-term PM2.5 exposure and 
all-cause mortality in a cohort of 1,599,329 U.S. adults (aged 18-84 years) who were 
interviewed in the National Health Interview Surveys (NHIS) between 1986 and 2014 
and linked to the National Death Index (NDI) through 2015. The authors also 
constructed a subcohort of 635,539 adults from the full cohort for whom body mass 
index (BMI) and smoking status data were available. They employed a hybrid modeling 
technique to estimate annual-average PM2.5 concentrations derived from regulatory 
monitoring data and constructed in a universal kriging framework using geographic 
variables including land use, population, and satellite estimates. Pope et al. (2019) 
assigned annual-average PM2.5 exposure from 1999-2015 to each individual by census 
tract and utilized complex (accounting for NHIS’s sample design) and simple Cox 
proportional hazards models for the full cohort and the subcohort. We report the 
results of the complex model for the subcohort, which controls for individual-level 
covariates including age, sex, race-ethnicity, inflation-adjusted income, education level, 
marital status, rural versus urban, region, survey year, BMI, and smoking status. 

All-Cause Mortality 

In a single-pollutant model, the coefficient and standard error for PM2.5 are estimated 
from the hazard ratio (1.12) and 95% confidence interval (1.08-1.15) associated with a 
change in annual mean PM2.5 exposure of 10.0 ug/m3 (Pope et al. 2019, Table 2, 
Subcohort). 

E.1.5   Wu et al. (2020) 

Wu et al. (2020) evaluated the relationship between long-term PM2.5 exposure and all-
cause mortality in more than 68.5 million Medicare enrollees (over the age of 64), using 
Medicare claims data from 2000-2016 representing over 573 million person-years of 
follow-up and over 27 million deaths. This cohort included over 20% of the U.S. 
population and was, at the time of publishing, the largest air pollution study cohort to 
date. The authors modeled PM2.5 exposure at a 1-km2 grid resolution using a hybrid 
ensemble-based prediction model that combined three machine learning models and 
relied on satellite data, land-use information, weather variables, chemical transport 
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model simulation outputs, and monitor data. Wu et al. (2020) fit five different statistical 
models: a Cox proportional hazards model, a Poisson regression model, and three 
causal inference approaches (GPS estimation, GPS matching, and GPS weighting). All 
five statistical approaches provided consistent results; we report the results of the Cox 
proportional hazards model here. The authors adjusted for numerous individual-level 
and community-level confounders, and sensitivity analyses suggest that the results are 
robust to unmeasured confounding bias. 

All-Cause Mortality 

In a single-pollutant model, the coefficient and standard error for PM2.5 are estimated 
from the hazard ratio (1.066) and 95% confidence interval (1.058-1.074) associated 
with a change in annual mean PM2.5 exposure of 10.0 ug/m3 (Wu et al. 2020, Table S3, 
Main analysis, 2000-2016 Cohort, Cox PH). 

E.2 Chronic/Severe Illness  
Table E-2 below summarizes the health impact functions used to estimate the 
relationship between PM2.5 and chronic / severe health effects. We present a brief 
summary of each of the studies below.    

Table E-2. Core Health Impact Functions for Particulate Matter and Chronic Illness 

Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

Cardiac 
Arrest 

Ensor et al. 2013 Houston, TX 18-99  D24HourMean 0.006376 0.002823 Logistic  

Cardiac 
Arrest 

Rosenthal et al. 2008 Indianapolis, 
Indiana 

0-99  D24HourMean 0.00198 0.005018 Logistic  

Cardiac 
Arrest 

Silverman et al. 2010 New York City 0-99  D24HourMean 0.003922 0.00222 Logistic  

Lung 
Cancer 

Gharibvand et al. 2017 Nationwide 
U.S. and 5 
Canadian 
provinces 

30-99  Mean 0.037844 0.013121 Log-linear  

Alzheimer’s 
Disease 

Kioumourtzoglou 
et al 

2016 50 
Northeastern 
U.S. cities 

65-99  Mean 0.139762 0.017753 Log-linear  

Parkinson’s 
Disease 

Kioumourtzoglou 
et al 

2016 50 
Northeastern 
U.S. cities 

65-99  Mean 0.076961 0.018905 Log-linear  

Stroke Kloog et al. 2012 New England  65-99  Mean 0.00343 0.001265 Log-linear  

Acute 
Myocardial 
Infarction, 
Nonfatal 

Peters et al. 2001 Boston, MA 18-99  D24HourMean 0.024121 0.009285 Logistic  

Acute 
Myocardial 
Infarction, 
Nonfatal 

Pope et al.  2006 Greater Salt 
Lake City, UT 

0-99  D24HourMean 0.0048 0.0019 Logistic Index MI 
and unstable 
angina 

Acute 
Myocardial 

Sullivan et al. 2005 King County, 
WA 

0-99  D24HourMean 0.0019 0.0022 Logistic  
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Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

Infarction, 
Nonfatal 

Acute 
Myocardial 
Infarction, 
Nonfatal 

Wei et al.  2019 Continental 
U.S. 

65-99  D24HourMean 0.0011 0.0002 Logistic  

Acute 
Myocardial 
Infarction, 
Nonfatal 

Zanobetti and 
Schwartz 

2006 Greater 
Boston, MA 

0-99  D24HourMean 0.0053 0.0022 Logistic Age range 
adjusted 
Admissions 
through ER 
visits only. 

Acute 
Myocardial 
Infarction, 
Nonfatal 

Zanobetti et al. 2009 26 U.S. Comm 0-99  D24HourMean 0.0022 0.0006 Log-linear Age range 
adjusted. All 
Seasons. 

 

E.2.1   Ensor et al. (2013)   

Ensor et al. (2013) studied the association between short-term ambient air pollution 
(PM2.5 and O3) exposure and out-of-hospital cardiac arrest (OHCA). Ensor et al. (2013) 
gathered medical and demographic data for all ages from an Emergency Medical 
Services database in Houston, Texas between 2004 and 2011. Authors assessed the 
medical data and defined out-of-hospital cardiac arrest as emergency medical services 
performing chest compressions. Authors collected ambient air pollution and weather 
data from Texas Commission of Environmental Quality monitors and calculated hourly 
and daily averages for PM2.5 and O3. The authors used a time-stratified case crossover 
analysis and conditional logistic regression. 

Out-of-Hospital Cardiac Arrest 

In a single-pollutant model, the coefficient and standard error are estimated from a 
reported excess risk of OHCA of 3.9 percent (95% CI: 0.5 -7.4) for a 6 µg/m3 increase in 
the averaged daily mean PM2.5 concentration 0- and 1-days prior to onset (Ensor et al. 
2013, Table 4). 

E.2.2   Gharibvand et al. (2017)   

Gharibvand et al. (2017) evaluated whether positive associations exist between PM2.5 

exposure and incidence of lung cancer in non-smokers among the Adventist Health and 
Smog Study-2 (AHSMOG-2), a group of health-conscious individuals of which 81% are 
never smokers. Authors collected ambient air pollution data (PM2.5 and O3) from the US 
EPA Air Quality system over two years (January 2000-December 2001). Three a priori 
factors were added to the models as covariates: time spent outdoors, residence length, 
and moving distance during follow-up. Authors modeled the association between PM2.5 

exposure and incidence of lung cancer using a Cox proportional hazards regression, 
with attained age as the time variable. The authors conducted both a single and a two-
pollutant (PM2.5 and O3) analyses. The study concluded that each 10 µg/m3 increase in 
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ambient PM2.5 concentrations was positively associated with increased lung cancer 
risks within the single-pollutant and two-pollutant multivariable models with O3. 

Incidence, Lung Cancer 

In a two-pollutant multivariable model with O3 (including a priori covariates), the 
coefficient and standard error were estimated from a hazard ratio of 1.46 (95% CI: 
1.13-1.89) for each 10 µg/m3 increase in mean monthly ambient PM2.5 concentrations 
(Gharibvand et al. 2016, Table 3). 

E.2.3   Kioumourtzoglou et al. (2016)   

Kioumourtzoglou et al. (2016) evaluated the potential impact of long-term PM2.5 

exposure on first hospital admission for dementia, Alzheimer’s, or Parkinson’s diseases 
among Medicare beneficiaries (>= 65 years old) in 50 cities in the northeastern U.S. 
(Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, 
New York, Pennsylvania, Rhode Island, Vermont, and Washington, D.C.). Authors 
retrieved medical data from the Center for Medicaid and Medicare from the years 1999-
2010. The study followed enrollees as a cohort, which included annual follow-up 
records identifying the first hospital admissions for dementia (ICD-9 290), Alzheimer’s 
(ICD-9 331.0), Parkinson’s (ICD-9 332), and other cardiovascular comorbidities. With 
respect to Alzheimer’s disease, the study evaluated 9,817,806 Medicare enrollees and 
included 266,725 cause-specific hospital admissions indicating disease onset. With 
respect to Parkinson’s disease, the study evaluated 9,817,806 Medicare enrollees and 
included 119,425 cause-specific hospital admissions indicating disease onset. Annual 
average PM2.5 concentrations were estimated for each city using data from the U.S. EPA 
Air Quality System database. Kioumourtzoglou et al. (2016) fit a time-varying Cox 
proportional hazards model for each city, using the city-wide annual PM2.5 

concentrations as the time-varying exposure of interest and a linear term for the 
calendar year. This eliminated the impact of PM2.5 variation by city and any PM2.5 trends 
within cities. The model adjusted for cardiovascular comorbidities, and incorporated a 
counting process extension which created an observation for each year of follow-up per 
person. The results were then pooled across individuals and cities.  

Incidence, Alzheimer’s Disease (ICD-9 331.0) 

In a single-pollutant model, the coefficient and standard error were estimated from a 
hazard ratio of 1.15 (95% CI: 1.11-1.19) for a 1 µg/m3 increase in the average annual 
PM2.5 concentrations (Kioumourtzoglou et al. 2016, Table 1). 

Incidence, Parkinson’s Disease (ICD-9 332) 

In a single-pollutant model, the coefficient and standard error were estimated from a 
hazard ratio of 1.08 (95% CI: 1.04-1.12) for a 1 µg/m3 increase in the average annual 
PM2.5 concentrations (Kioumourtzoglou et al. 2016, Table 1). 
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E.2.4   Kloog et al. (2012)   

Kloog et al. (2012) analyzed the effects of long- and short-term PM2.5 exposure on 
hospital admissions due to strokes with a new PM2.5 exposure model in New England 
(Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont) from 
2000 to 2006. We use this endpoint as a surrogate for PM2.5-attributable stroke 
incidence. Authors collected medical data from 67,678 adults aged 65 to 99 in the U.S. 
Medicare program database from 2000 to 2006. They defined all respiratory, 
cardiovascular disease, stroke, and diabetes based on emergency department visits and 
primary discharge diagnosis records. Authors used a hybrid exposure technique 
comprised of daily PM2.5 concentration data from aerosol optical depth (AOD) 
measurements and ambient air monitors from the U.S. EPA and Interagency Monitoring 
of Protected Visual Improvements (IMPROVE). Authors also obtained land use 
regressions, meteorological data (National Climatic Data Center), and socioeconomic 
data (U.S. Census Bureau) matched to zip codes in order to perform land use Poisson 
regressions. 

Incidence, Stroke (ICD Codes 430-436) 

In a single-pollutant model for patients over the age of 65, the coefficient and standard 
error were estimated from the percent change (3.49%) and 95% confidence interval 
(0.09-5.18%) for a 10 µg/m3 increase in the 7-year mean PM2.5 concentrations (Kloog et 
al., 2012, Table 3). 

E.2.5 Peters et al. (2001)   

Peters et al. (2001) studied the relationship between increased particulate air pollution 
and onset of heart attacks in the Boston area from 1995 to 1996. The authors used air 
quality data for PM10, PM10-2.5, PM2.5, ”black carbon”, O3, CO, NO2, and SO2 in a case-
crossover analysis. For each subject, the case period was matched to three control 
periods, each 24 hours apart. In univariate analyses, the authors observed a positive 
association between heart attack occurrence and PM2.5 levels hours before and days 
before onset. The authors estimated multivariate conditional logistic models including 
two-hour and twenty-four hour pollutant concentrations for each pollutant. They found 
significant and independent associations between heart attack occurrence and both 
two-hour and twenty-four hour PM2.5 concentrations before onset. Significant 
associations were observed for PM10 as well. None of the other particle measures or 
gaseous pollutants was significantly associated with acute myocardial infarction for the 
two hour or twenty-four hour period before onset.   

The patient population for this study was selected from health centers across the 
United States. The mean age of participants was 62 years old, with 21% of the study 
population under the age of 50. In order to capture the full magnitude of heart attack 
occurrence potentially associated with air pollution and because age was not listed as 
an inclusion criteria for sample selection, we apply an age range of 18 and over in the C-
R function. According to the National Hospital Discharge Survey, there were no 
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hospitalizations for heart attacks among children <15 years of age in 1999 and only 
5.5% of all hospitalizations occurred in 15-44 year olds (Popovic, 2001, Table 10).   

Acute Myocardial Infarction, Nonfatal   

The coefficient and standard error are calculated from an odds ratio of 1.62 (95% CI 
1.13-2.34) for a 20 µg/m3 increase in twenty-four hour average PM2.5 (Peters et al., 
2001, Table 4, p. 2813).   

Incidence Rate: We use the county-specific daily AMI hospitalization rate (ICD-9 code 
410) for the population of individuals aged 18 years and older as the estimate for the 
incidence rate of nonfatal heart attack, assuming all heart attacks that are not instantly 
fatal will result in a hospitalization. We did not adjust for fatal AMIs in the incidence 
rate estimation, due to the way that the epidemiological studies are designed. Those 
studies consider total admissions for AMIs, which includes individuals living at the time 
the studies were conducted. Therefore, we use the definition of AMI that matches the 
definition in the epidemiological studies.   

Population: Population of ages 18 and older   

Adjustment: As some fraction of the admitted individuals die in the hospital, we apply 
a survival rate of 93% in calculating the avoided cases of AMI in order to avoid double 
counting (once in the calculation of AMI cases and once in the calculation of PM-related 
mortality).  

E.2.6 Pope et al. (2006)   

Pope et al. (2006) evaluated the association between short-term exposure to PM2.5 and 
acute ischemic heart disease events, including acute nonfatal myocardial infarction, all 
acute coronary events, and subsequent myocardial infarctions in individuals living in 
greater Salt Lake City, Utah. In a case-crossover study, these ischemic events were 
assessed in relation to a 10 µg/m3 increase in PM2.5. The researchers determined that a 
10 µg/m3 increase in PM2.5 resulted in a 4.5% increase (95% CI: 1.1-8.0) in unstable 
angina and myocardial infarction.   

Acute Myocardial Infarction, Nonfatal   

In a single-pollutant model the coefficient and standard error were estimated from the 
percent increase (4.81%) and 95% confidence interval (95% CI: 0.98-8.79) for a 10 
µg/m3 increase in daily 24-hour mean PM2.5 (Pope et al., 2006, Table 3).   

Incidence Rate: AMI hospital admission rate for all ages. See the incidence rate 
discussion under Peters et al. (2001) in Section E.2.5.   

Population: All ages   

Adjustment: See the adjustment description in Section E.2.5.  
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E.2.7 Rosenthal et al. (2008)   

Rosenthal et al. (2008) examined the effects of short-term PM2.5 exposure on out-of-
hospital cardiac arrest incidence and whether these effects were connected to 
demographic data or presence of heart rhythm. Additionally, Rosenthal et al. (2008) 
compared exposure time and measurement method on the effects of short-term PM2.5 

exposure and out-of-hospital cardiac arrest incidence. Authors obtained medical data 
from the Wishard Ambulance Service, a local emergency medical service in 
Indianapolis, Indiana, from July 2, 2002 to July 7, 2006. The study defined out-of-
hospital cardiac arrest using the same criteria as Ensor et al. (2013) and Silverman et al. 
(2010). Authors collected daily and hourly PM2.5 concentrations from two City of 
Indianapolis monitoring sites and using two separate methods: the Federal Reference 
Method (FRM) for 24-hour filter samples, and a Federal Equivalence Method (FEM). 
The authors used a case crossover analysis with conditional logistic regressions in 
order to study the effects of short-term PM2.5 exposure on out-of-hospital cardiac arrest 
incidence. Rosenthal et al. (2008) found a positive but statistically insignificant 
association between non-dead on arrival (DOA) out-of-hospital cardiac arrest cases and 
ambient PM2.5 concentrations. Although they also noted a statistically significant 
positive association when restricted to witnessed, non-DOA out-of-hospital cardiac 
arrest cases, that subgroup is less applicable to the available baseline incidence rate of 
non-DOA out-of-hospital cardiac arrest cases.  

Out-of-Hospital Cardiac Arrest 

In a single-pollutant model of all non-DOA OHCA cases, the coefficient and standard 
error were estimated from a hazard ratio of 1.02 (95% CI: 0.92-1.12) for each 10 µg/m3 
increase in daily mean PM2.5 concentrations, lagged by 0-1 days (Rosenthal et al. 2008, 
Table 5). 

E.2.8 Silverman et al. (2010)   

Silverman et al. (2010) investigated the link between short-term ambient air pollution 
exposure (PM2.5, NO2, SO2, O3, and CO) and out-of-hospital cardiac arrest in New York 
City between 2002 and 2006. Authors obtained medical data from the Emergency 
Medical Services of the New York City Fire Department for 8,216 subjects aged 0 to 99, 
average age 65.6 with slightly more men than women. Authors collected air pollution 
and weather data from the US EPA’s Air Quality System monitors within a 20-mile 
radius of New York City and averaged over 24-hour periods. Authors conducted time 
series and case crossover analyses with 0- and 1-day lagged air pollution levels and by 
season.  

Out-of-Hospital Cardiac Arrest 

In a single-pollutant case-crossover model, the coefficient and standard error were 
estimated from a relative risk of 1.04 (95% CI: 0.99-1.08) for a 10 µg/m3 increase in the 
averaged daily mean PM2.5 concentration 0- and 1-day prior to onset (Silverman et al. 
2010, Table 4). 
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E.2.9 Sullivan et al. (2005)   

Sullivan et al. (2005) studied the relationship between onset time of acute myocardial 
infarction and the preceding hourly PM2.5 concentrations in 5,793 confirmed cased of 
myocardial infarction through King County, Washington. In this case-crossover study 
from 1988-1994, air pollution exposure levels averaged 1 hour, 2 hours, 4 hours, and 24 
hours before onset of myocardial infarction were compared to a set of time-stratified 
referent exposures from the same day of the week in the month of the case event. The 
authors estimated that an associated risk of 1.01 (95% CI: 0.98-1.05) for myocardial 
infarction onset could be attributed to a 10 µg/m3 increase in PM 2.5 the hour before 
the MI onset. No increased risk was found in all cases with preexisting cardiac diseases 
with an odds ratio of 1.05 (95% CI: 0.95-1.16). Furthermore, stratification for 
hypertension, diabetes, and smoking status did not modify the association between 
PM2.5 and onset of myocardial infarction.   

Acute Myocardial Infarction, Nonfatal   

In a single-pollutant model the coefficient and standard error were estimated from the 
odds ratio (1.02) and 95% confidence interval (95% CI: 0.98-1.07) for a 10 µg/m3 
increase in daily 24- hour mean PM2.5 lagged 1 day (Sullivan et al., 2005, Table 3).   

Incidence Rate: AMI hospital admission rate for all ages. See the incidence rate 
discussion under Peters et al. (2001) in Section E.2.5.  

Population: All ages   

Adjustment: See the adjustment description in Section E.2.5.  

E.2.10   Wei et al. (2019)   

Wei et al. (2019) evaluated the relationship between short-term PM2.5 exposure and 
hospital admissions for 214 mutually exclusive disease groups, including acute 
myocardial infarction, in a time-stratified, case-crossover analysis of over 95 million 
Medicare inpatient hospital claims from 2000-2012. The authors estimated daily PM2.5 
levels at a 1-km2 grid cell level using a satellite based, neural network model that was 
calibrated using monitor data and assigned 0-1 day lagged PM2.5 exposure to each 
participant by zip code of residence. For each disease group, Wei et al. (2019) created a 
case crossover dataset that controlled for individual level and zip code level variables, 
day of the week, seasonality, and long-term time trends. They used conditional logistic 
regression models to estimate associations between PM2.5 exposure and risk of 
hospital admission and found positive associations for numerous rarely studied and 
numerous well-studied disease groups.  

Acute Myocardial Infarction, Nonfatal 

In a single-pollutant model, the coefficient and standard error are estimated from a 
reported relative increase in risk (0.11%) and 95% confidence interval (0.07%-0.16%) 
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associated with a 1 ug/m3 increase in 0-1 day lagged PM2.5 exposure (Wei et al. 2019, 
Figure 3, CCS 100 Acute Myocardial Infarction). 

E.2.11   Zanobetti and Schwartz (2006)   

Zanobetti and Schwartz (2006) analyzed hospital admissions through emergency 
department for myocardial infarction (ICD-9 code 410) and pneumonia (ICD-9 codes 
480-487) for associations with fine particulate air pollution, ozone, black carbon, 
nitrogen dioxide, PM not from traffic, and CO in the greater Boston area from 1995-
1999. The authors used a case- crossover analysis with control days matched on 
temperature. Significant associations were detected for NO2 with a 12.7% increase 95% 
CI: 5.8-18.0), PM2.5 with an 8.6% increase (95% CI: 1.2-15.4), and black carbon with an 
8.3% increase (95% CI: 0.2-15.8) in emergency myocardial infarction hospitalizations. 
Similarly, significant associations were identified for PM2.5 with a 6.5% increase (95% 
CI: 1.1-11.4) and CO with a 5.5% increase (95% CI: 1.1-9.5) in pneumonia 
hospitalizations.   

Acute Myocardial Infarction, Nonfatal   

The study looked at hospital admissions of AMI through the ER. Under the assumption 
that all heart attacks will end in hospitalization, we consider the endpoint as heart 
attack events to be consistent with other studies. In a single-pollutant model, the 
coefficient and standard error are estimated from the percent change in risk (8.65%) 
and 95% confidence interval (95% CI: 1.22-15.38%) for a 16.32 µg/m3 increase in daily 
24-hour mean PM2.5 for an average of the 0- and 1-day lag (Zanobetti A. and Schwartz, 
2006, Table 4).   

Incidence Rate: AMI hospital admission rate for all ages. See the incidence rate 
discussion under Peters et al. (2001) in Section E.2.5.   

Population: All ages. Note that although Zanobetti and Schwartz (2006) reports results 
for the 65-99 year old age range, for comparability to other studies, we apply the results 
to all ages. Since the vast majority of AMIs occur among population 65-99, over-
counting may not be an issue when applying the risk coefficient to all ages.   

Adjustment: See the adjustment description in Section E.2.5.   

E.2.12   Zanobetti et al. (2009)   

Zanobetti et al. (2009) examined the relationship between daily PM2.5 levels and 
emergency hospital admissions for cardiovascular causes, myocardial infarction, 
congestive heart failure, respiratory disease, and diabetes among 26 U.S. communities 
from 2000-2003. The authors used meta-regression to examine how this association 
was modified by season- and community-specific PM2.5 composition while controlling 
for seasonal temperature as a substitute for ventilation. Overall, the authors found that 
PM2.5 mass higher in Ni, As, and Cr as well as Br and organic carbon significantly 
increased its effects on hospital admissions. For a 10 µg/m3 increase in 2-day averaged 
PM2.5, a 1.89% (95% CI: 1.34-2.45) increase in cardiovascular disease admissions, a 
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2.25% (95% CI: 1.10-3.42) increase in myocardial infarction admissions, a 1.85% (95% 
CI: 1.19-2.51) increase in congestive heart failure admissions, a 2.74% (95% CI: 1.30-
4.20) increase in diabetes admissions, and a 2.07% (95% CI: 1.20-2.95) increase in 
respiratory admissions were observed. The relationship between PM2.5 and 
cardiovascular admissions was significantly modified when the mass of PM2.5 was high 
in Br, Cr, Ni, and sodium ions, while mass high in As, Cr, Mn, organic carbon, Ni and 
sodium ions modified the myocardial infarction relationship and mass high in As, 
orgarnic carbon, and sulfate ions modified the diabetes admission rates.  

Acute Myocardial Infarction, Nonfatal   

The study looked at hospital admissions of AMI through ER. Under the assumption that 
all heart attacks will end in hospitalization, we consider the endpoint as heart attack 
events to be consistent with other studies. In a single-pollutant model the coefficient 
and standard error are estimated from the percent change in risk (2.25%) and 95% 
confidence interval (95% CI: 1.10-3.42) for a 10 µg/m3 increase in 2-day averaged PM2.5 
(Zanobetti et al., 2009, Table 3).   

Incidence Rate: AMI hospital admission rate for all ages. See the incidence rate 
discussion under Peters et al. (2001) in Section E.2.5.   

Population: All ages. Note that although Zanobetti et al. (2009) reports results for the 
65-99 year old age range, for comparability to other studies, we apply the results to all 
ages. Since the vast majority of AMIs occurs among population 65-99, over-counting 
may not be an issue when applying the risk coefficient to all ages.   

Adjustment: See the adjustment description in Section E.2.5.   

E.3 Hospitalizations   
Table E-3 summarizes the health impacts functions used to estimate the relationship 
between PM2.5 and hospital admissions. Below, we present a brief summary of each of 
the studies and any items that are unique to the study.  

Table E-3. Core Health Impact Functions for Particulate Matter and Hospital 
Admissions 

Effect Author Year Location Age Co-Poll Metric Beta Std Err Form Notes 

Cardiovascular Bell et al. 2015 213 U.S. 
Counties 

65-99  D24HourMean 0.000648 0.000089 Log-linear  

Respiratory Bell et al. 2015 213 U.S. 
Counties 

65-99  D24HourMean 0.00025 0.000120 Log-linear  

Respiratory Ostro et al. 2009 6 California 
counties 

0-18  D24HourMean 0.002752 0.000772 Log-linear  
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E.3.1 Bell et al. (2015)   

Bell et al. (2015) investigated the effects of short-term fine particulate matter (PM2.5) 
exposure on respiratory health (ICD-9 464-466, 480-487, 490-492, 493) and 
cardiovascular health (ICD-9 410, omitting 410.x2; 410-414; 426-427; 428; 429; 430-
438; and 440-448) in older adults (>64 years). Authors acquired data for 213 U.S. 
counties (1999-2010) from the Medicare Claims Inpatient Files for U.S. residents >65 
years of age. Authors chose variables including sex, age, county of residence, and cause 
of hospital admission, as determined by ICD-9 codes. Authors collected PM2.5 exposure 
data from county population-based ambient monitors from the US EPA Air Quality 
System and averaged for county and day. Data were present for 56.5% of study days 
due to the sampling schedule of the monitors. Bell et al. (2015) utilized Bayesian 
hierarchal modeling to examine the links between PM2.5 and hospital admissions, 
running separate models to generate risk models for time lags (0-2 days) and season for 
any estimated variation in health effects.  

Hospital Admissions, Cardio-, Cerebro- and Peripheral Vascular Disease (ICD Codes 
410, omitting 410.x2; 410-414; 426-427; 428; 429; 430-438; and 440-448) 

In a single-pollutant model, the coefficient and standard error are estimated from a 
percent increase in risk of 0.65% (95% CI: 0.48-0.83%) for an increase of 10 µg/m3 in 
same-day daily mean PM2.5 concentrations (Bell et al. 2015, Table 1). 

Hospital Admissions, Respiratory-2 (ICD Codes 490-492, 464-466, 480-487, 493) 

In a single-pollutant model, the coefficient and standard error are estimated from a 
percent increase in risk of 0.25% (95% CI: 0.01-0.48%) for an increase of 10 µg/m3 in 
same-day daily mean PM2.5 concentrations (Bell et al. 2015, Table 1). 

E.3.2 Ostro et al. (2009)   

Ostro et al. (2009) estimated the association between ambient PM2.5, EC, organic carbon 
(OC), NO3, and SO4 on hospital admissions for respiratory diseases in children ages 5 to 
19. The study used the California Office of Statewide Health Planning and Development, 
Healthcare Quality and Analysis Division hospitalization data from six California 
counties for the 2000 to 2003 study period. Ostro et al. (2009) classified hospital 
admissions into: all respiratory disease (ICD-9 codes 460-519), asthma (ICD-9 code 
493), acute bronchitis (ICD-9 code 466), and pneumonia (ICD-9 codes 480-486). They 
aggregated the hospital admission data to the county level to create a daily time series 
of admissions for each county. Authors took air quality measurements from the 
California Air Resources Board, which captured speciated 24-hour average pollutant 
measurements using a filter-based Met One Speciation Air Sampling System. 
Meteorological measurements for average daily temperature and relative humidity 
came from the California Air Resources Board or the California Irrigation Management 
Information System. Authors analyzed data using a Poisson regression with time, day of 
the week, temperature, relative humidity, and pollutant as explanatory variables. Ostro 
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et al. (2009) controlled for seasonality and time dependent effects by including a 
natural spline smoother for the daily time trend and meteorology.  

Hospital Admissions, All Respiratory (ICD Codes 460-519) 

In a single-pollutant model, the coefficient and standard error are estimated from an 
excess risk of 4.1% (95% CI: 1.8-6.4%) for a 14.6 µg/m3 increase in the daily mean 
PM2.5 concentrations, lagged by 3 days (Ostro et al. 2009, Table 2, pg. 477). 

E.4 Emergency Room Visits  
Table E-4 summarizes the health impact functions used to estimate the relationship 
between PM2.5 and emergency room visits. Below, we present a brief summary of each 
of the studies and any items that are unique to the study.  

Table E-4. Core Health Impact Functions for Particulate Matter and Emergency 
Room Visits 

Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

Cardiovascular Ostro et 
al. 

2016 8 California 
cities 

0-99  D24HourMean 0.000612 0.000422 Logistic  

Respiratory Krall et al. 2013 Atlanta, GA 0-99  D24HourMean 0.000545 0.000267 Log-linear  

Respiratory Krall et al. 2013 Birmingham, 
AL 

0-99  D24HourMean 0.000968 0.000352 Log-linear  

Respiratory Krall et al. 2013 St. Louis, MO 0-99  D24HourMean 0.000832 0.000329 Log-linear  

Respiratory Krall et al. 2013 Dallas, TX 0-99  D24HourMean 0.001353 0.000588 Log-linear  

 
E.4.1 Ostro et al. (2016)   

Ostro et al. (2016) investigated the association between short-term, source-specific 
(vehicular emissions, biomass burning, soil, and secondary NO¬3 and SO4 sources) PM2.5 
concentrations and emergency department visits for respiratory and cardiovascular 
diseases in eight cities in California from 2005 to 2008. Authors obtained medical and 
demographic data from the Office of Statewide Health Planning and Development in 
California, and diagnosis was defined with ICD-9 codes: all cardiovascular (390-459), 
ischemic heart disease (410–414), AMI (410), cardiac dysrhythmia (427), and heart 
failure (428). Ostro et al. (2016) conducted a case cross-over analysis, stratified by year 
and month, controlling for weather and day of the week covariates. Authors used a 
county-level logistic regression and random-effects meta-analysis to examine the 
association between source-specific PM2.5 and emergency department visits for 
respiratory and cardiovascular diseases. Results indicate a positive association between 
vehicle PM2.5 emissions and emergency department visits for all cardiovascular 
diseases.  

ER Visits, All Cardiac Outcomes (ICD Codes 390-459) 
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In a single-pollutant model, the coefficient and standard error were estimated from the 
excess risk of 0.7% (95% CI: -0.2-1.7%) for a 11.4 µg/m3 (interquartile range) increase 
in daily mean PM2.5 concentration, lagged by 2 days (Ostro et al. 2016, Table 4). 

E.4.2 Krall et al. (2013)   

Krall et al. (2013) investigated the associations between short-term, source-specific 
(traffic and coal combustion) ambient PM2.5 exposure and emergency department visits 
for respiratory diseases in U.S. cities (Atlanta, GA, Birmingham, AL, St. Louis, MO, and 
Dallas, TX). Authors obtained medical data from hospital electronic billings for 
emergency department visits due to respiratory disease, identified using ICD-9 codes 
(460-465, 466, 477, 480-486, 491, 492, 493, 496, 786.07). Authors collected PM2.5 
concentrations from one ambient air monitor in each of the four cities and gathered 
meteorological data from the National Climactic Data Center. Krall et al. (2013) 
estimated source-specific PM2.5 using apportionment models, which separate PM2.5 
sources based on chemical composition. This model also included data on gaseous 
pollutant concentrations from the Community Multiscale Air Quality (CMAQ) with 
Tracers model. Krall et al. (2013) used Poisson time series regression models to analyze 
associations between short-term PM2.5 exposure and emergency department visits for 
respiratory diseases. They then compared source-specific PM2.5 exposures across cities 
to estimate associations with the emergency department visit data. To limit 
confounders, the authors adjusted models for indicator variables, meteorological 
variables, and long-term trends in emergency department visits.  

ER Visits, Respiratory (ICD Codes 480-486, 491, 492, 496, 460-465, 466, 477, 493, 
786.07) 

In a single-pollutant model, the coefficient and standard error were estimated from a 
relative risk of 1.005 (95% CI: 1.000-1.010) for Atlanta, GA; 1.009 (95% CI: 1.003-
1.015) for Birmingham, AL; 1.008 (95% CI: 1.002-1.014) for St. Louis, MO; and 1.012 
(95% CI: 1.002-1.023) for Dallas, TX. All relative risks were calculated for a 9.16 µg/m3 

increase in daily mean PM2.5 concentrations, lagged by 0 days (Krall et al. 2016, Figure 
1). 

 

E.5 Minor Effects   
Table E-5 summarizes the health impacts functions used to estimate the relationship 
between PM2.5 and minor effects. Below, we present a brief summary of each of the 
studies and any items that are unique to the study.   

Table E-5.  Core Health Impact Functions for Particulate Matter and Minor Effects 

Effect Author Year Location Age Co-Poll Metric Beta Std Err Form 

Work Loss 
Days 

Ostro 1987 Nationwide 18-64  D24HourMean 0.004600 0.000360 Log-linear 

Minor Ostro and 1989 Nationwide 18-64 Ozone D24HourMean 0.007410 0.000700 Log-linear 
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Effect Author Year Location Age Co-Poll Metric Beta Std Err Form 

Restricted 
Activity Days 

Rothschild 

Hay Fever/ 
Rhinitis 

Parker et al. 2009 Nationwide 3-17 Summer 
O3, 
PM2.5-10, 
NO2, SO2 

Annual 0.025464 0.009618 Logistic 

 
E.5.1 Ostro (1987)   

Ostro (1987) estimated the impact of PM2.5 on the incidence of work-loss days (WLDs), 
restricted activity days (RADs), and respiratory-related RADs (RRADs) in a national 
sample of the adult working population, ages 18 to 65, living in metropolitan areas. The 
study population is based on the Health Interview Survey (HIS), conducted by the 
National Center for Health Statistics. The annual national survey results used in this 
analysis were conducted in 1976-1981. Ostro reported that two-week average PM2.5 
levels were significantly linked to work-loss days, RADs, and RRADs, however there was 
some year-to-year variability in the results. Separate coefficients were developed for 
each year in the analysis (1976-1981); these coefficients were pooled. The coefficient 
used in the concentration-response function presented here is a weighted average of 
the coefficients in Ostro (1987, Table III) using the inverse of the variance as the weight.   

Work Loss Days   

The coefficient used in the C-R function is a weighted average of the coefficients in 
Ostro (1987, Table III) using the inverse of the variance as the weight:  

  

The standard error of the coefficient is calculated as follows, assuming that the 
estimated year-specific coefficients are independent:  
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Incidence Rate: daily work-loss-day incidence rate per person ages 18 to 64 = 0.00595 
(U.S. Bureau of the Census, 1997, No. 22; Adams et al., 1999, Table 41)   

Population: adult population ages 18 to 64  

E.5.2 Ostro and Rothschild (1989)  

Ostro and Rothschild (1989) estimated the impact of PM2.5 and ozone on the incidence 
of minor restricted activity days (MRADs) and respiratory-related restricted activity 
days (RRADs) in a national sample of the adult working population, ages 18 to 65, living 
in metropolitan areas. The study population is based on the Health Interview Survey 
(HIS), conducted by the National Center for Health Statistics. In publications from this 
ongoing survey, non-elderly adult populations are generally reported as ages 18-64. 
From the study, it is not clear if the age range stops at 65 or includes 65 year olds. We 
apply the C-R function to individuals ages 18-64 for consistency with other studies 
estimating impacts to non-elderly adult populations. The annual national survey results 
used in this analysis were conducted in the period 1976-1981. Controlling for PM2.5, 
two-week average ozone has highly variable association with RRADs and MRADs.  
Controlling for ozone, two-week average PM2.5 was significantly linked to both health 
endpoints in most years.   

Minor Restricted Activity Days   

Using the results of the two-pollutant model, we developed separate coefficients for 
each year in the analysis, which were then combined for use in this analysis. The 
coefficient is a weighted average of the coefficients in Ostro and Rothschild (1989, Table 
4) using the inverse of the variance as the weight:  

  

The standard error of the coefficient is calculated as follows, assuming that the 
estimated year-specific coefficients are independent:  

  

This reduces down to:  
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Incidence Rate: daily incidence rate for minor restricted activity days (MRAD) = 
0.02137 (Ostro and Rothschild, 1989, p. 243)   

Population: adult population ages 18 to 64   

E.5.3 Parker et al. (2009)   

Parker et al. (2009) investigated the associations between long-term PM2.5 exposure 
and respiratory allergies in an unrestricted population of children (aged 3-17 years) 
sampled from the United States National Health Interview Survey. Authors obtained 
symptom data from participant parents, who reported respiratory allergies on annual 
surveys. Parker et al. (2009) placed all study participants reporting symptoms of 
respiratory allergies or hay fever into a combined rhinitis group. Parker et al. (2009) 
then linked annual averages of SO2, NO2, PM2.5, and PM2.5-10 and warm season (May to 
September) O3 averages to participant’s addresses through ambient air pollution and 
meteorological data (O3, SO2, NO2, PM2.5, and PM10-2.5) collected from US EPA Air Quality 
System monitors. The authors adjusted their logistic regression models for survey year, 
poverty-level, race/ethnicity, age, family structure, insurance coverage, usual source of 
care, education of adult, urban-rural status, region, and median county-level income.  

Incidence, Hay Fever/Rhinitis  

In a multi-pollutant model, the coefficient and standard error were estimated from an 
odds ratio of 1.29 (95% CI: 1.07-1.56) for a 10 µg/m3 increase in PM2.5 concentrations 
(Parker et al. 2009, Table 4). 

E.6 Asthma-Related Effects   
Table E-6 summarizes the health impacts functions used to estimate the relationship 
between PM2.5 and asthma exacerbation. Below, we present a brief summary of each of 
the studies and any items that are unique to the study.  

Table E-6. Core Health Impact Functions for Particulate Matter and Asthma-Related 
Effects 

Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

Asthma 
Symptoms 
(Albuterol 
Use), 
Albuterol 
use 

Rabinovitch 
et al. 

2006 Denver, CO 6-17  D24HourMean 0.001996 0.001477 Log-linear Albuterol 
use 

Asthma 
Onset 

Tétreault et 
al. 

2016 Québec, 
Canada 

0-17  Annual 0.043672 0.000885 Log-linear Separate 
HIFs for 
ages 0-4; 
5-17 
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E.6.1 Rabinovitch et al. (2006)   

Rabinovitch et al. (2006) analyzed the relationship between short-term PM2.5 exposure 
and asthma exacerbation in children. The study followed children, ages 6 to 13 
attending the Kunsberg School at the National Jewish Medical Research Center with 
diagnosed asthma for two consecutive winters from 2001-2003. Authors gave an 
electronic bronchodilator (albuterol) to the children to capture the frequency of use 
within a 24-hour period. The children also responded to three questions to determine if 
they may have an upper respiratory infection (URI), and urine samples were taken to 
measure urinary leukotriene E4 levels on select days. The authors collected hourly 
ambient PM2.5 levels from the Colorado Department of Health Air Pollution Control 
Division’s Tapered Element Oscillating Microbalance (TEOM) monitor, located 2.7 miles 
west of the school. Additionally, a Federal Reference Monitor (FRM) located next to the 
TEOM measured 24-hour PM2.5 levels. The authors obtained meteorological data from 
the Colorado Department of Health Air Pollution Control Division and the National 
Climatic Data Center. A Poisson regression modeled albuterol use as a function of the 
morning (12:00am to 11:00 am) maximum hourly PM2.5 level or the morning mean 
hourly PM2.5 level. The model used both the TEOM and FRM data, individually, 
incorporated four lag periods (0 to 2 days and 0- to 2-day average), and included 
several covariates: temperature, pressure, humidity, time trend, Friday indicator, and 
URI indicator. Rabinovitch et al. (2006) found that, although the PM2.5 pollution levels 
were well below the National Ambient Air Quality Standards, there is a consistent 
association between peak ambient PM2.5 levels and increased albuterol use in asthmatic 
children.  

Asthma Symptoms (Albuterol Use), Albuterol Use 

In a single-pollutant model, the coefficient and standard error were estimated from a 
percentage of use increase of 1.2% (95% CI: -0.6-2.9%) for a 6 µg/m3 increase in 
averaged daily mean PM2.5 concentration lagged by 0-, 1-, and 2-days (Rabinovitch et al. 
2006, Table 4, pg. 1099). 

 
E.6.2 Tétreault et al. (2016)   

Tétreault et al. (2016) investigated the relationship between childhood asthma onset 
and long-term pollution exposure (PM2.5, NO2, O3) in Quebec, Canada. The authors 
obtained data from four medical-administrative databases collectively known as 
Quebec Integrated Chronic Disease Surveillance System (QICDSS) between April 1, 
1996 and March 31, 2011. The study defined the onset of asthma as a hospital 
discharged diagnosis of asthma or two reports of asthma from two separate physicians 
within a two-year period. The authors used Cox proportional hazard models to estimate 
the association between asthma onset and pollution exposure, controlling for 
demographics and socioeconomic status. Time-varying exposure models assessed time-
varying exposures to the three pollutants in question. Tétreault et al. (2016) showed 
that childhood asthma onset may be associated with exposure to PM2.5, NO2, and O3.  
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As the physiology and etiology of lung development in children is similar in children 6-
17, we apply the 4-12 year age-striated effect estimate from Tétreault et al. (2016) to 
children ages 4-17 (Baena-Cagnani et al., 2007, Guerra et al., 2004, Ochs et al., 2004, 
Sparrow et al., 1991, Trivedi and Denton, 2019).   

Incidence, Asthma 

In a single-pollutant time-varying model, the coefficient and standard error were 
estimated from a hazard ratio of 1.33 (95% CI: 1.31-1.34) for a 6.53 µg/m3 
(interquartile range) increase in annual PM2.5 concentration at the residential address 
(Tétreault et al. 2016, Table 5). 

E.7 Sensitivity Analysis – General   
Table E-7 summarizes the PM2.5 health impacts functions considered by EPA to be 
sensitivity analyses. Below, we present a brief summary of each of the studies and any 
items that are unique to the study.  

Table E-7. Core Health Impact Functions for Particulate Matter Sensitivity Analyses 

Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

Mortality, 
All Cause 

Di et al. 2017 Nationwide 65-99  Annual 0.008066 0.000118 Log-linear Single-
pollutant 
model 

Mortality, 
All Cause 

Di et al. 2017 Nationwide 65-99 O3 Annual 0.005921 0.000096 Log-linear Nearest 
monitor 
analysis 

Mortality, 
All Cause 

Di et al. 2017 Nationwide 65-99 O3 Annual 0.007789 0.000118 Log-linear Cox model with 
mixed effects 

Hospital 
Admissions, 
Respiratory 

Jones et al. 2015 New York State 0-99  D24HourMean 0.000800 0.000170 Logistic HA, 
Respiratory-1 

Incidence, 
Asthma 

McConnell 
et al. 

2010 13 Southern 
California 
communities 

4-17  Annual 0.029127 0.017732 Log-linear  

Incidence, 
Asthma 

Nishimura 
et al. 

2013 5 Urban 
regions  

7-21  Annual 0.029559 0.069101 Logistic Black, Hispanic 

Mortality, 
All Cause 

Pope et al. 2015 Nationwide 30-99  Annual 0.006766 0.000712 Log-linear LURBME model 

Hospital 
Admissions, 
All Cardiac 
Outcomes 

Talbott et al. 2014 Massachusetts 0-99 O3 D24HourMean 0.000499 0.000355 Logistic  

Hospital 
Admissions, 
All Cardiac 
Outcomes 

Talbott et al. 2014 New Jersey 0-99 O3 D24HourMean 0.001094 0.000227 Logistic  

Hospital 
Admissions, 
All Cardiac 
Outcomes 

Talbott et al. 2014 New Mexico 0-99 O3 D24HourMean 0.001094 0.001943 Logistic  

Hospital Talbott et al. 2014 New York 0-99 O3 D24HourMean 0.001094 0.000151 Logistic  
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Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

Admissions, 
All Cardiac 
Outcomes 

Hospital 
Admissions, 
All Cardiac 
Outcomes 

Talbott et al. 2014 Florida 0-99 O3 D24HourMean -0.000401 0.000307 Logistic  

Hospital 
Admissions, 
All Cardiac 
Outcomes 

Talbott et al. 2014 New 
Hampshire 

0-99 O3 D24HourMean -0.001207 0.001238 Logistic  

Hospital 
Admissions, 
All Cardiac 
Outcomes 

Talbott et al. 2014 Washington 0-99 O3 D24HourMean -0.000904 0.000540 Logistic  

Mortality, 
All Cause 

Turner et al. 2016 Nationwide 30-99  Annual 0.005827 0.000963 Log-linear Single-
pollutant 
model 

Emergency 
Hospital 
Admissions, 
All 
Respiratory 

Zanobetti et 
al. 

2009 26 U.S. 
communities 

65-99  D24HourMean 0.002049 0.000437 Log-linear  

 

E.7.1 Di et al. (2017)   

See full study description under Di et al. (2017) in Appendix E, Section E.1.1. 

Mortality, All-Cause (Single-Pollutant Model) 

In a single-pollutant model, the coefficient and standard error for PM2.5 are estimated 
from the hazard ratio (1.084) and 95% confidence interval of (1.081-1.086) associated 
with a change in annual mean PM2.5 exposure of 10.0 µg/m3 (Di et al., 2017, Table 2 
Single-pollutant analysis).    

Mortality, All-Cause (Nearest Monitor Analysis) 

In a two-pollutant model, the coefficient and standard error for PM2.5 are estimated 
from the hazard ratio (1.061) and 95% confidence interval of (1.059-1.063) associated 
with a change in annual mean PM2.5 exposure of 10.0 µg/m3 (Di et al., 2017, Table 2 
Nearest Monitor Analysis, Cox PH with GEE).    

Mortality, All-Cause (Cox Proportional Hazards Model with Mixed Effects (COXME))  

In a two-pollutant model, the coefficient and standard error for PM2.5 are estimated 
from the hazard ratio (1.081) and 95% confidence interval of (1.078-1.083) associated 
with a change in annual mean PM2.5 exposure of 10.0 µg/m3 (Di et al., 2017, Table S3 
Main Analysis, Cox PH with mixed effects (COXME)).    
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E.7.2 Jones et al. (2015)   

Jones et al. (2015) assessed the impacts of PM2.5 and its chemical constituents (sulfate 
(SO4), ammonium (NH4), nitrate (NO3), elemental carbon (EC), and carbon-only portion 
of organic carbon aerosol) on respiratory health. The study encompassed all ages, races, 
and ethnicities with a case-crossover analysis in New York state. Analysis used 24-hour 
average PM2.5 chemical constituent concentrations from the Community Multiscale Air 
Quality (CMAQ) model, and meteorological data from the National Climactic Data 
Center. The authors assessed hospital discharge data from the New York State 
Department of Health State Planning and Research Cooperative System (SPARCS) 
through principle diagnosis categorized by ICD-9 code (chronic bronchitis (ICD-9 491), 
emphysema (ICD-9 492), asthma (ICD-9 493), and chronic airway obstruction (ICD-9 
496)). Authors used a single pollutant conditional logistic regression model to analyze 
the respiratory hospital admission and PM2.5 chemical constituent data over time and 
by season. The authors calculated hazard ratios (HRs) using the PHREG procedure in 
SAS (version 9.2) with 95% confidence intervals from the regression models. Jones et al. 
(2015) found that PM2.5 and its chemical constituents showed significant associations 
between total PM2.5 mass and hospital admissions in the year-round model and for all 
exposure lags (0-4 days). Of all the PM2.5 chemical constituents, sulfate had the 
strongest association with respiratory hospital admissions, particularly during the 
summer months. Additionally, sulfate was the largest contributor to the PM2.5 total 
mass (49.9%). 

Hospital Admissions, Respiratory-1 (ICD-9 Codes 491, 492, 493, 496) 

In a year-round single-pollutant model, the coefficient and standard error were 
estimated from a hazard ratio of 1.006 (95% CI: 1.003-1.008) for a 7.48 µg/m3 increase 
in daily mean PM2.5 concentrations, lagged by 4 days. The model was adjusted for 
season. (Jones et al. 2015, Figure 2). 

E.7.3 McConnell et al. (2010)   

McConnell et al. (2010) examined the association between long-term traffic-related air 
pollution (PM2.5, PM10, O3, and NO2) exposure and incident asthma in children. The 
authors collected data for three years from a cohort of 2,497 kindergarten and first-
grade children who entered the Southern California Children’s Health Study without 
asthma or wheeze. McConnell et al. (2010) defined new-onset asthma as physician-
diagnosed asthma reported by parents on a yearly questionnaire. While the primary 
focus of the study was traffic-related air pollution from local vehicle emissions, the 
authors also utilized ambient air pollution exposure data from central site monitors in 
each of the 13 communities in the Southern California Children’s Health Study. The 
authors used a multilevel Cox proportional hazards model to estimate the association 
between ambient air pollution exposure and new-onset asthma, controlling for 
race/ethnicity, secondhand smoke exposure, and pets in the home. The authors 
concluded that traffic-related pollution exposure may contribute to an increased risk of 
new-onset asthma in children.  



Appendix E: Core Particulate Matter Health Impact Functions in U.S. Setup 

BenMAP-CE User’s Manual Appendices March 2023 
E-23 

Incidence, Asthma 

In a single-pollutant model, the coefficient and standard error were estimated from a 
hazard ratio of 1.66 (95% CI: 0.91-3.05) for a 17.4 µg/m3 (range of exposure in the 13 
communities) increase in annual average PM2.5 exposure (McConnell et al. 2010, Table 
4). 

E.7.4 Nishimura et al. (2013)   

Nishimura et al. (2013) investigated the relationship between long-term early-life 
pollution exposure (PM2.5, PM10, O3, NO2, and SO2) and asthma onset in Latino and 
African American children in five urban areas (Chicago, IL; Bronx, NY; Houston, TX; San 
Francisco, CA; Puerto Rico). The authors obtained data from the Genes–environments 
and Admixture in Latino Americans (GALA II) Study and the Study of African 
Americans, Asthma, Genes and Environments (SAGE II). GALA II and SAGE II are case-
control studies that enrolled children with and without asthma. The studies defined 
case subjects as children with physician-diagnosed asthma plus two or more symptoms 
of coughing, wheezing, or shortness of breath in the two years before study enrollment 
while control subjects were children with no reported history of asthma, lung disease, 
or chronic illness, and no reported symptoms of coughing, wheezing, or shortness of 
breath in the two years before study enrollment. The authors estimated annual average 
pollution exposures during the first year of life as well as the first three years of life 
from self-reported residential histories by calculating inverse distance-squared 
weighted averages from the four closest U.S. EPA Air Quality System monitoring 
stations within 50 km. The authors first used regional- and study-specific logistic 
regression models to estimate the association between asthma diagnosis and pollution 
exposure, controlling for demographics and socioeconomic status and subsequently 
combined the regression coefficients into a multi-region estimate using a random-
effects meta-analysis. Nishimura et al. (2013) showed that early-life air pollution 
exposure may increase the risk for asthma development in later childhood for Latino 
and African American cohorts.  

Incidence, Asthma 

In a single-pollutant model estimating PM2.5 exposure during the first year of life, the 
coefficient and standard error were estimated from an odds ratio of 1.03 (95% CI: 0.90-
1.18) for a 1 µg/m3 increase in average annual PM2.5 levels at the residential address 
during the first year of life (Nishimura et al. 2013, Figure 2). 

E.7.5 Pope et al. (2015)   

Pope et al. (2015) evaluated the relationship between long-term exposure to ambient 
PM2.5 and risk of death from CVD and cardiometabolic disease, including effect 
modification of the relationship by pre-existing cardiometabolic risk factors, in the ACS 
Cancer Prevention Study II cohort (ages 30+). PM2.5 exposures were estimated at home 
addresses based on a land use regression model with Bayesian Maximum Entropy 
kriging of residuals (LURBME). Pope et al. utilized a Cox proportional hazards model 
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controlling for individual-level covariates which included variables that characterized 
current and former smoking habits, exposure to second -hand cigarette smoke, 
workplace PM2.5 exposure in each subject’s main lifetime occupation, self -reported 
exposure to dust and fumes in the workplace, marital status, level of education, body 
mass index, consumption of alcohol, and quartile ranges of dietary fat index and 
quartile ranges of a dietary vegetable/fruit/fiber index. Ecological covariates included 
median household income; percentage of people with <125% of poverty level income; 
percentage of unemployed individuals aged ≥16 years; percentage of adults with <12th 
grade education; and percentage of the population who were Black or Hispanic. 

Mortality, All-Cause (LURBME) 

In a single-pollutant model, the coefficient and standard error are estimated from the 
hazard ratio (1.07) and 95% confidence intervals (95% CI: 1.06-1.09) for a 10 µg/m3 
increase in monthly PM2.5 exposure levels averaged from 1999-2004 (Pope, et al., 2015, 
Table 1. Cox model with individual-level plus ecological covariates; exposure based on 
LUR-BME).  

E.7.6 Talbott et al. (2014)   

Talbott et al. (2014) assessed daily PM2.5 concentrations and hospitalizations for 
cardiovascular disease in Florida, Massachusetts, New Hampshire, New Jersey, New 
Mexico, New York, and Washington from 2001 to 2008. The authors gathered hospital 
discharge data from each state’s respective data stewards. Talbott et al. (2014) 
conducted a time-stratified case-crossover study using hospitalization data for all 
cardiovascular disease (ICD-9 390-459) and for several specific cardiovascular diseases 
within the ICD-9 390-459 range. Authors used a downscaling Bayesian space-time 
modeling approach to combine air monitoring data and air gridded numerical outputs 
from the Community Multi-Scale Air Quality Model (CMAQ) to predict daily PM2.5 
concentrations. The authors gathered meteorological data from the CDC Wonder North 
America Land Data Assimilation System Daily Air Temperatures and Heat Index. Talbott 
et al. (2014) used conditional logistic regression adjusted for O3 (same day as PM2.5) 
and maximum apparent temperature (same day as admission).  

Hospital Admissions, All Cardiac Outcomes (ICD-9 Codes 390-459) 

In a two-pollutant multivariable model with O3, the coefficient and standard error are 
estimated from an odds ratio of 1.005 (95% CI: 0.998-1.012) for Massachusetts; 1.011 
(95% CI: 1.007-1.016) for New Jersey; 1.011 (95% CI: 0.973-1.050) for New Mexico; 
1.011 (95% CI: 1.008-1.014) for New York; 0.996 (95% CI: 0.990-1.002) for Florida; 
0.988 (95% CI: 0.965-1.013) for New Hampshire; and 0.991 (95% CI: 0.981-1.002) for 
Washington. Each odds ratio is for a 10 µg/m3 increase in the averaged daily mean 
PM2.5 concentration 0-, 1-, and 2-day lags (Talbott et al. 2014, Table 3). 

E.7.7 Turner et al. (2016)   

See full study description under Turner et al. (2016) in Appendix E, Section E.1.2. 
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Mortality, All-Cause (Single-Pollutant Model) 

In a single-pollutant model, the coefficient and standard error for PM2.5 are estimated 
from the hazard ratio (1.06) and 95% confidence interval of (1.04–1.08) associated 
with a change of 10.0 µg/m3 in the mean PM2.5 exposure level from 1999-2004 (Turner 
et al., 2016, Table E10 HBM PM2.5, 1982-2004).    

E.7.8 Zanobetti et al. (2009)   

Zanobetti et al. (2009) examined the relationship between daily PM2.5 levels and 
emergency hospital admissions for cardiovascular causes, myocardial infarction, 
congestive heart failure, respiratory disease, and diabetes among 26 U.S. communities 
from 2000-2003. The authors used meta-regression to examine how this association 
was modified by season- and community-specific PM2.5 composition while controlling 
for seasonal temperature as a substitute for ventilation. Overall, the authors found that 
PM2.5 mass higher in Ni, As, and Cr as well as Br and organic carbon significantly 
increased its effects on hospital admissions. For a 10 µg/m3 increase in 2-day averaged 
PM2.5, a 1.89% (95% CI: 1.34-2.45) increase in cardiovascular disease admissions, a 
2.25% (95% CI: 1.10-3.42) increase in myocardial infarction admissions, a 1.85% (95% 
CI: 1.19-2.51) increase in congestive heart failure admissions, a 2.74% (95% CI: 1.30-
4.20) increase in diabetes admissions, and a 2.07% (95% CI: 1.20-2.95) increase in 
respiratory admissions were observed. The relationship between PM2.5 and 
cardiovascular admissions was significantly modified when the mass of PM2.5 was high 
in Br, Cr, Ni, and sodium ions, while mass high in As, Cr, Mn, organic carbon, Ni and 
sodium ions modified the myocardial infarction relationship and mass high in As, 
organic carbon, and sulfate ions modified the diabetes admission rates.  

Emergency Hospital Admissions, All Respiratory (ICD-9 Codes 460-519) 

In a single-pollutant model, the coefficient and standard error are estimated from the 
percent change in risk (2.07%) and 95% confidence interval (1.2% - 2.95%) for a 10 
µg/m3 increase in 2-day averaged PM2.5 (Zanobetti et al. 2009, Table 3). 

E.8 Sensitivity Analysis – At-Risk Populations 
Table E-8 summarizes the PM2.5 health impacts functions considered by EPA to be 
sensitivity analyses that characterize risk experienced by certain subpopulations. 
Below, we present a brief summary of each of the studies and any items that are unique 
to the study.  

Table E-8. Core Health Impact Functions for Particulate Matter Sensitivity Analyses 
of At-Risk Populations 

Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

ER Visits, 
Asthma 

Alhanti et 
al. 

2016 Atlanta, 
Dallas, St. 
Louis 

0-4  D24HourMean 0.0025  0.0019 Log-linear White 

ER Visits, Alhanti et 2016 Atlanta, 0-4  D24HourMean 0.0037  0.0012 Log-linear Non-White 
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Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

Asthma al. Dallas, St. 
Louis 

ER Visits, 
Asthma 

Alhanti et 
al. 

2016 Atlanta, 
Dallas, St. 
Louis 

5-18  D24HourMean 0.0025  0.0016 Log-linear White 

ER Visits, 
Asthma 

Alhanti et 
al. 

2016 Atlanta, 
Dallas, St. 
Louis 

5-18  D24HourMean 0.0049  0.0012 Log-linear Non-White 

Mortality, 
All Cause 

Di et al. 2017 Nationwide 65-99 O3 Annual 0.0061  0.0001 Log-linear Non-Hispanic 
White 

Mortality, 
All Cause 

Di et al. 2017 Nationwide 65-99 O3 Annual 0.0110 0.0008 Log-linear Hispanic White 

Mortality, 
All Cause 

Di et al. 2017 Nationwide 65-99 O3 Annual 0.0189 0.0004 Log-linear Black 

Mortality, 
All Cause 

Di et al. 2017 Nationwide 65-99 O3 Annual 0.0092  (0.0010) Log-linear Asian 

Mortality, 
All Cause 

Di et al. 2017 Nationwide 65-99 O3 Annual 0.0095  0.0019 Log-linear Native American 

Mortality, 
All Cause  

Pope et al.  2019 Nationwide 18-99  D24HourMean 
0.0095 0.0079 

Log-linear Native 
American, Non-
Hispanic 

Mortality, 
All Cause  

Pope et al.  2019 Nationwide 18-99  D24HourMean 0.0104 0.0018 Log-linear White, Non-
Hispanic 

Mortality, 
All Cause  

Pope et al.  2019 Nationwide 18-99  D24HourMean 0.0140 0.0049 Log-linear Black, Non-
Hispanic 

Mortality, 
All Cause  

Pope et al.  2019 Nationwide 18-99  D24HourMean 0.0095 0.0079 Log-linear Asian, Non-
Hispanic 

Mortality, 
All Cause  

Pope et al.  2019 Nationwide 18-99  D24HourMean 0.0182 0.0040 Log-linear Hispanic 

 

E.8.1 Alhanti et al. (2016)   

Alhanti et al. (2016) examined the relationship between daily PM2.5 concentrations and 
emergency room visits for asthma (ICD-9 493, 786.07) among residents of all ages in 
Atlanta (1993-2009), Dallas (2006-2009), and St. Louis (2001-2007). Patient-level ER 
visit data were obtained from hospitals in the three cities. Daily 24-hour average PM2.5 
concentrations were estimated using data from all available monitors in the region 
including monitors from U.S. EPA AQS in all three cities, as well as the South Eastern 
Aerosol Research and Characterization (SEARCH) network and Assessment of the 
Spatial Aerosol Composition (ASACA) network in Atlanta. The authors ran city-specific 
daily time-series Poisson regression models by age group (0-4, 5-18, 19-39, 40-64, 65-
99) and performed additional analysis stratified by race (White, non-White) and sex. 
Models controlled for temperature, day of the week, holidays, race, age, and sex. 

Emergency Room Visits, Asthma 

In single-pollutant models for ages 0-4, the coefficient and standard error are estimated 
from the three-city weighted average rate ratio (1.02) and 95% confidence interval 
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(0.99-1.05) for White children and (1.03) and 95% confidence interval (1.01-1.05) for 
non-White children for a 8 µg/m3 increase in three-day moving average PM2.5 

concentrations (Alhanti et al. 2016, Supplemental Table 4). 

In single-pollutant models for ages 5-18, the coefficient and standard error are 
estimated from the three-city weighted average rate ratio (1.02) and 95% confidence 
interval (1.00-1.05) for White children and (1.04) and 95% confidence interval (1.02-
1.06) for non-White children for a 8 µg/m3 increase in three-day moving average PM2.5 

concentrations (Alhanti et al. 2016, Supplemental Table 4). 

E.8.2 Di et al. (2017)   

See full study description under Di et al. (2017) in Appendix E, Section E.1.1. 

Mortality, All-Cause 

In multi-pollutant models, the coefficient and standard error are estimated from a 
hazard ratio of 1.063 (95% CI: 1.060, 1.065) for White; 1.208 (95% CI: 1.199, 1.217) for 
Black; 1.096 (95% CI: 1.075, 1.117) for Asian; 1.116 (95% CI: 1.100, 1.133) for 
Hispanic; and 1.100 (95% CI: 1.060, 1.140) for Native Americans. Each odds ratio is for 
a 10 µg/m3 increase in annual mean PM2.5 exposure (Di et al. 2017, Supplementary 
Table S3 (GEE, By Race)). 

E.8.3 Pope et al. (2019) 

See full study description under Pope et al. (2019) in Appendix E, Section E.1.4. 

Mortality, All-Cause 

The basic CPH model is used to find the coefficient and standard error from a hazard 
ratio of 1.11 (95% CI: 1.07-1.15) for Non-Hispanic White; 1.20 (95% CI: 1.11-1.30) for 
Hispanic; 1.15 (95% CI: 1.05-1.27) for Non-Hispanic Black; and 1.10 (95% CI: 0.94-
1.28) for the “Other/unknown” group, which was applied for the Non-Hispanic Native 
American and Non-Hispanic Asian groups. Each hazard ratio is for a 10 µg/m3 increase 
in PM2.5 (Pope et al. 2019, Supplementary Table S3).   
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Appendix F. Core Ozone Health Impact Functions in U.S. Setup   

In this Appendix, we present the core health impact functions used to estimate ozone-
related adverse health effects, i.e., the functions that, as of the current release, U.S. EPA 
routinely uses in its regulatory analyses. Each sub-section has a table with a brief 
description of each health impact function and the underlying parameters. Following 
each table, we present a brief summary of each of the studies and any items that are 
unique to the study.   

Note that Appendix C mathematically derives the standard types of health impact 
functions encountered in the epidemiological literature, such as, log-linear, logistic and 
linear, so we simply note here the type of functional form. And Appendix D presents a 
description of the sources for the incidence and prevalence data used in the health 
impact functions.   

F.1 Short-term Mortality   
Table F-1 summarizes the core health impacts functions used to estimate the 
relationship between ozone and mortality. Below, we present a brief summary of each 
of the studies and any items that are unique to the study.  

Table F-1. Core Health Impact Functions for Ozone and Mortality* 

Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

Mortality, 
Respiratory 

Katsouyanni 
et al. 

2009 90 U.S. Cities 0-99  D1HourMax 0.000727 0.000567 Log-
linear 

Warm season.  

Mortality, 
Respiratory 

Katsouyanni 
et al. 

2009 90 U.S. Cities 0-99  D8HourMax 0.000727 0.000567 Log-
linear 

Warm season. 
8-hour max 
from 1-hour 
max using 
adjustment 
factor of 1.13, 
resulting in 
effective beta of 
0.000822. 

Long-term 
Mortality, 
Respiratory 

Turner et al. 2016 Nationwide 30-99 PM2.5, 
NO2 

Annual 
(D8HourMax) 

0.007696 0.001176 Log-
linear 

Warm season.  

Mortality, 
Respiratory 

Zanobetti 
and 
Schwartz 

2008 48 U.S. Cities 0-99  D8HourMax 0.000827 0.000228 Log-
linear 

D8HourMean 
approxi-mated 
as D8HourMax 

*Unless otherwise stated, mortality is short-term. 
 

F.1.1 Katsouyanni et al. (2009)   

Katsouyanni et al. (2009) used time series methods to examine the relationship 
between short-term O3 exposures and mortality across the U.S for all ages. The study 
utilized mortality data from the National Center for Health Statistics 
(www.cdc.gov/nchs) for years 1987 through 1996, excluding accidental deaths (i.e., 
International Classification of Diseases (ICD]-9 800). 90 U.S. cities with population sizes 
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varying from about 250,000 to above 9 million with the largest populations were 
included. Daily number of deaths ranged from 5 to 198. All 90 cities had daily summer 
O3 measurements. Investigators conducted extensive simulation studies to test 1) the 
choice of the smoothing method and basic functions used to estimate the smooth 
function of time in the city-specific models, and 2) the number of degrees of freedom to 
be used in the smooth function of time. The investigators also evaluated whether each 
city should be assigned the same model specification or whether each city-specific 
model should depend on city-specific characteristics. For the former, the same degrees 
of freedom (ranging from 1 to 20 df/year of data) were assigned to the smooth function 
of time for every city. The range was determined by choosing the minimum possible 
degrees of freedom per year up to a maximum degrees of freedom per year that 
essentially removed all variation in the data beyond time scales of one week. Also, the 
collective experience of the investigators indicated that using more than 20 df/year 
does not substantially affect the risk estimates. For the latter approach, the degrees of 
freedom for the smooth function of time were chosen separately for each city using a fit 
criterion, such as the Akaike Information Criterion (AIC), or by minimizing the partial 
autocorrelation function (PACF) of the residuals. Nonparametric methods 
underestimated the standard error of the air pollution regression coefficient, penalized 
splines gave relatively small bias, and PACF in combination with penalized splines 
performed relatively well in terms of bias. Therefore, the identified risk estimate was a 
summer-only penalized spline estimate of respiratory mortality. 

Short-term Mortality, Respiratory 

In a single pollutant model, the coefficient and standard error are based on the 
summer-only penalized spline estimate of respiratory mortality of 0.73% (-0.39, 
1.85%) per 10 ppb increase in O3 from distributed lag days (Katsouyanni et al. 2009, 
Table 24: Distributed Lags; Penalized splines; O3 Results).  

The Health Impact Function was adjusted from the daily 1-hour max metric to the daily 
8-hour max metric using a ratio of 1.13 (ratio of 1-hour max to 8-hour max ozone) 
(Anderson and Bell 2010, Table 2). 

F.1.2 Turner et al. (2016)   

Turner et al. (2016) examined the relationship between long-term O3 exposure (1982-
2004) and mortality (all-cause, cause-specific) in American Cancer Society Cancer 
Prevention Study-II participants (aged 30-99 years). A hierarchal Bayesian space-time 
model based on National Air Monitoring Stations, State and Local Air Monitoring 
Stations, and Community Multi-Scale Air Quality model data estimated daily eight-hour 
maximum ozone concentrations at the participant’s address. The models considered 
meteorological data and levels of other ambient pollutants (PM2.5, both regional and 
near-source, and NO2). Turner et al. (2016) utilized Cox proportional hazard models 
adjusted a priori for individual, socio-demographic, and ecological variables. Notably, 
the study compared annual mortality with warm-season O3 exposures, so full-year 
baseline incidence rates will be used with risk estimates from this study. 
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Long-term Mortality, Respiratory 

In a multi-pollutant model, the coefficient and standard error are based on the warm-
season specific hazard ratio of 1.08 (1.06-1.11) per 10 ppb increase in seasonal average 
of daily 8-hour maximum O3 concentrations (Turner et al. 2016, Table E9: Diseases of 
the respiratory system (cause of death), HBM O3 (multipollutant model data, fully 
adjusted HR)).  

F.1.3 Zanobetti and Schwartz (2008)   

Zanobetti and Schwartz (2008) investigated the effects of short-term O3 exposure on 
mortality (all-cause, cardiovascular, stroke, and respiratory) in an unrestricted 
population of children, adults, and older adults (aged 0-99 years). Between 1998 and 
2000, the authors collected mortality data from the National Center for Health Statistic 
in 48 cities across the United States. Along with eight-hour ozone concentrations and 
meteorological data obtained from US EPA’s Air Quality System Technology Transfer 
Network, the authors utilized a generalized linear model with quasi Poisson link 
functions to estimate the effects of short-term ozone on respiratory mortality. The 
model adjusted for season, day of the week, and temperature. Since ozone 
concentrations vary between seasons, the authors decided to restrict their analysis to 
ozone warm season (June - August).  

Short-term Mortality, Respiratory 

In a single pollutant model, the coefficient and standard error are based on the warm 
season excess risk estimate of 0.83% (95% CI: 0.38-1.28%) for an increase of 10 ppb in 
daily 8-hour mean O3 concentrations over a summed lag structure of zero to three days 
(Zanobetti and Schwartz, 2008, Table 1).  

The D8HourMean metric is approximated as D8HourMax in this function. 

F.2  Hospital Admissions   
Table F-2 summarizes the core health impact functions used to estimate the 
relationship between ozone and hospital admissions. Below, we present a brief 
summary of each of the studies and any items that are unique to the study.  

Table F-2. Core Health Impact Functions for Ozone and Hospital Admissions 

Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

All 
Respiratory 

Katsouyanni 
et al. 

2009 14 U.S. Cities 65-99  D1HourMax 0.000280 0.000176 Log-
linear 

Warm season 

All 
Respiratory 

Katsouyanni 
et al. 

2009 14 U.S. Cities 65-99  D8HourMax 0.000280 0.000176 Log-
linear 

Warm season. 8-
hour max from 1-
hour max using 
adjustment factor 
of 1.13, resulting 
in effective beta 
of 0.000316. 
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F.2.1 Katsouyanni et al. (2009)   

Katsouyanni et al. (2009) used time series methods to examine the relationship 
between daily O3 concentrations and hospital admissions in North America. For U.S. 
benefits estimation purposes, we focus on analyses performed using the U.S hospital 
admission datasets. These datasets included 14 cities with populations between 
291,000 and 5,377,000 between 1987-1996 with city-wide daily 1-hour maximum O3 
concentrations ranging from ~34-60 ppb. The authors used a first stage analysis 
protocol that used generalized linear models with either penalized or natural splines to 
adjust for seasonality, with varying degrees of freedom. The number of degrees of 
freedom were also chosen by minimizing the partial autocorrelation function of the 
model’s residuals. Model specification approach accounted for seasonal patterns, 
weekend and vacation effects, and epistemics of respiratory disease. Data were also 
analyzed to detect potential thresholds in the concentration-response relationships. 
The second stage analysis used pooling approaches and assessed potential effect 
modification by sociodemographic characteristic and indicators of the pollution 
mixture across study regions.  

Hospital Admissions, All Respiratory (ICD-9 Codes 460-519) 

In a two-pollutant model including PM10, the coefficient and standard error are based 
on the warm season excess risk estimate of 0.28% (-0.07, 0.62%) per 10 ppb increase in 
O3 averaged over lags 0-1 day (Katsouyanni et al., 2009, Table 40: Average of Lags 0-1 
day; Penalized splines).  

The Health Impact Function was adjusted from the daily 1-hour max metric to the daily 
8-hour max metric using a ratio of 1.13 (ratio of 1-hour max to 8-hour max ozone) 
(Anderson and Bell 2010, Table 2). 

F.3  Emergency Room Visits   
Table F-3 summarizes the core health impacts functions used to estimate the 
relationship between ozone and emergency room (ER) visits. Below, we present a brief 
summary of each of the studies and any items that are unique to the study.  

Table F-3. Core Health Impact Functions for Ozone and Emergency Room Visits  

Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

Respiratory Barry et al. 2018 Atlanta, GA 0-99  D8HourMax 0.00118  0.00040 Log-linear All year 

Respiratory Barry et al. 2018 Birmingham, 
AL 

0-99  D8HourMax 0.00118  0.00059 Log-linear All year 

Respiratory Barry et al. 2018 Dallas, TX 0-99  D8HourMax 0.00195  0.00049 Log-linear All year 

Respiratory Barry et al. 2018 Pittsburgh, 
PA 

0-99  D8HourMax 0.00118  0.00040 Log-linear All year 

Respiratory Barry et al. 2018 St. Louis, MO-
IL 

0-99  D8HourMax 0.00079  0.00030 Log-linear All year 
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F.3.1 Barry et al. (2018)   

Barry et al. (2018) investigated the effects of short-term ozone exposure on emergency 
department visits for respiratory disease (ICD-9 493, 786.07, 460-466, 477, 491, 492, 
496, 480–486, 466.1, 466.11, 466.19) in an unrestricted population of children, adults, 
and older adults (aged zero-99 years) within five cities (Atlanta, GA, Birmingham, AL, 
Dallas, TX, Pittsburgh, PA, and St. Louis, MO-IL) across the United States. Authors 
obtained individual-level health data from hospitals and hospital associations in each of 
the five cities. Models fusing air quality monitor data with Community Multi-Scale Air 
Quality modeled data at 12 x 12-km grids were used to estimate ozone exposure. Barry 
et al. (2018) assessed associations with short-term ozone exposure with daily eight-
hour maximum ozone concentrations. The authors implemented Poisson log-linear 
models to estimate risk values with three day moving averages.  

ER Visits, Respiratory (ICD-9 Codes 493, 786.07, 460-466, 477, 491, 492, 496, 480–
486, 466.1, 466.11, 466.19) 

In single-pollutant models, the coefficient and standard error are based on rate ratios of 
1.03 (95% CI: 1.01-1.05) in Atlanta, GA, 1.03 (95% CI: 1.00-1.06) in Birmingham, AL, 
1.05 (95% CI: 1.02-1.07) in Dallas TX, 1.03 (95% CI: 1.01-1.05) in Pittsburgh, PA, and 
1.02 (95% CI: 1.01-1.04) in St. Louis, MO-IL for an increase of 25 ppb in full-year 8-hour 
daily maximum O3 concentrations (three day moving average) (Barry et al. 2018, Table 
3). 

F.4 Minor Effects 
Table F-4 summarizes the core health impacts functions used to estimate the 
relationship between ozone and minor effects. Below, we present a brief summary of 
each of the studies and any items that are unique to the study. 

Table F-4. Core Health Impact Functions for Ozone and Minor Effects 

Effect Author Year Location Age Co-Poll Metric Beta Std Err Form Notes 

School 
Loss Days, 
All Cause 

Gilliland et 
al. 

2001 Southern 
California 

5-17  D8HourMax 0.007824 0.004445 Log-
linear 

All year, 8-hour 
max from 8-hour 
mean. 

Minor 
Restricted 
Activity 
Days 

Ostro and 
Rothschild 

1989 Nationwide 18-64 PM2.5 D1HourMax 0.002200 0.000658 Log-
linear 

 

Minor 
Restricted 
Activity 
Days 

Ostro and 
Rothschild 

1989 Nationwide 18-64 PM2.5 D8HourMax 0.002200 0.000658 Log-
linear 

8-hour max from 
1-hour max using 
adjustment factor 
of 1.14, resulting 
in effective beta of 
0.002508. 

Hay Fever/ 
Rhinitis 

Parker et al. 2009 Nationwide 3-17 PM2.5, 
PM2.5-10, 
NO2, SO2 

Annual 
(D24HourMean) 

0.01655  0.00390 Logistic Warm season; 
long term 
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Effect Author Year Location Age Co-Poll Metric Beta Std Err Form Notes 

Hay Fever/ 
Rhinitis 

Parker et al. 2009 Nationwide 3-17 PM2.5, 
PM2.5-10, 
NO2, SO2 

Annual 
(D8HourMax) 

0.01655  0.00390 Logistic Warm season; 
long term; 8-hour 
max from 24-hour 
mean using 
adjustment factor 
of 0.654, resulting 
in effective beta of 
0.010818. 

 
F.4.1 Gilliland et al. (2001) 

Gilliland et al. (2001) examined the association between air pollution and school 
absenteeism among 4th grade school children (ages 9-10) in 12 southern Californian 
communities. The study was conducted from January through June 1996. The authors used 
school records to collect daily absence data and parental telephone interviews to identify 
causes. They defined illness- related absences as respiratory or non-respiratory. A 
respiratory illness was defined as an illness that included at least one of the following: 
runny nose/sneezing, sore throat, cough, earache, wheezing, or asthma attack. The 
authors used 15 and 30 day distributed lag models to quantify the association between ozone, 
PM10, and NO2 and incident school absences. Ozone levels were positively associated with 
all school absence measures and significantly associated with all illness-related school 
absences (non-respiratory illness, respiratory illness, URI and LRI). Neither PM10 nor NO2 was 
significantly associated with illness-related school absences, but PM10 was associated with 
non-illness related absences. The health impact function for ozone is based on the results of the 
single pollutant model.  

School Loss Days  

Gilliland et al. (2001) defines an incident absence as an absence that followed 
attendance on the previous day and the incidence rate as the number of incident 
absences on a given day over the population at risk for an absence on a given day (i.e. 
those children who were not absent on the previous day). Since school absences due to 
air pollution may last longer than one day, an estimate of the average duration of school 
absences could be used to calculate the total avoided school loss days from an estimate of 
avoided new absences. A simple ratio of the total absence rate divided by the new absence 
rate would provide an estimate of the average duration of school absences, which could 
be applied to the estimate of avoided new absences as follows:  

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

 

∆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = −�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 × �𝑒𝑒−𝛽𝛽×𝑂𝑂3 − 1�� × 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 × 𝑝𝑝𝑝𝑝𝑝𝑝 

Since the function is log-linear, the baseline incidence rate (in this case, the rate of new 
absences) is multiplied by duration, which reduces to the total school absence rate. 
Therefore, the same result would be obtained by using a single estimate of the total 
school absence rate in the C-R function. Using this approach, we assume that the same 
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relationship observed between pollutant and new school absences in the study would be 
observed for total absences on a given day. As a result, the total school absence rate is used 
in the function below. The derivation of this rate is described in the section on baseline 
incidence rate estimation.  

For all absences, the coefficient and standard error are based on a percent increase of 
16.3 percent (95% CI -2.6 percent, 38.9 percent) associated with a 20 ppb increase in 8-hour 
average ozone concentration (2001, Table 6, p. 52).  

A scaling factor is used to adjust for the number of school days in the ozone season. In 
the modeling program, the function is applied to every day in the ozone season (May 1 - 
September 30), however, in reality, school absences will be avoided only on school days. 
We assume that children are in school during weekdays for all of May, two weeks in June, one 
week in August, and all of September. This corresponds to approximately 2.75 months 
out of the 5 month season, resulting in an estimate of 39.3% of days (2.75/5*5/7).  

In addition, not all children are at-risk for a new school absence, as defined by the 
study. On average, 5.5% of school children are absent from school on a given day (U.S. 
Department of Education, 1996, Table 42-1). Only those who are in school on the previous 
day are at risk for a new absence (1-0.055 = 94.5%). As a result, a factor of 94.5% is used in 
the function to estimate the population of school children at-risk for a new absence.  

Incidence Rate: daily school absence rate = 0.055 (U.S. Department of Education, 1996, 
Table 42-1)  

Population: population of children ages 9-10 not absent from school on a given day = 
94.5% of children ages 9-10 (The proportion of children not absent from school on a 
given day (5.5%) is based on 1996 data from the U.S. Department of Education (1996, 
Table 42-1).)  

Scaling Factor: Proportion of days that are school days in the ozone season = 0.393.  

(Ozone is modeled for the 5 months from May 1 through September 30. We assume that 
children are in school during weekdays for all of May, 2 weeks in June, 1 week in August, 
and all of September. This corresponds to approximately 2.75 months out of the 5 
month season, resulting in an estimate of 39.3% of days (2.75/5*5/7). ) 

F.4.2 Ostro and Rothschild (1989) 

Ostro and Rothschild (1989) estimated the impact of PM2.5 and ozone on the incidence 
of minor restricted activity days (MRADs) and respiratory-related restricted activity 
days (RRADs) in a national sample of the adult working population, ages 18 to 65, living in 
metropolitan areas. The study population is based on the Health Interview Survey (HIS), 
conducted by the National Center for Health Statistics. In publications from this ongoing 
survey, non-elderly adult populations are generally reported as ages 18-64. From the study, it 
is not clear if the age range stops at 65 or includes 65 year olds. We apply the C-R function to 
individuals ages 18-64 for consistency with other studies estimating impacts to non-elderly 
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adult populations. The annual national survey results used in this analysis were conducted 
in 1976-1981. Controlling for PM2.5, two-week average ozone had a highly variable 
association with RRADs and MRADs. Controlling for ozone, two-week average PM2.5 was 
significantly linked to both health endpoints in most years. The C-R function for ozone is based 
on the co-pollutant model with PM2.5.  

The study is based on a “convenience” sample of non-elderly individuals. Applying the C-R 
function to this age group is likely a slight underestimate, as it seems likely that elderly 
are at least as susceptible to ozone as individuals under 65. A number of studies have found 
that hospital admissions for the elderly are related to ozone exposures (e.g., Schwartz, 1994b; 
Schwartz, 1995).  

Minor Restricted Activity Days  

The coefficient and standard error used in the C-R function are based on a weighted average of 
the coefficients in Ostro and Rothschild (1989, Table 4). The derivation of these estimates is 
described below.  

Incidence Rate: daily incidence rate for minor restricted activity days (MRAD) = 0.02137 
(Ostro and Rothschild, 1989, p. 243)  

Population: adult population ages 18 to 64  

The coefficient used in the C-R function is a weighted average of the coefficients in 
Ostro and Rothschild (1989, Table 4) using the inverse of the variance as the weight. 
The calculation of the MRAD coefficient and its standard error is exactly analogous to 
the calculation done for the work-loss days coefficient based on Ostro (1987).  

 

The standard error of the coefficient is calculated as follows, assuming that the 
estimated year-specific coefficients are independent:   
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F.4.3 Parker et al. (2009)   

Parker et al. (2009) investigated the associations between long-term O3 exposure and 
respiratory allergies in an unrestricted population of children (aged 3-17 years) 
sampled from the United States National Health Interview Survey. Authors obtained 
symptom data from participant parents, who reported respiratory allergies on annual 
surveys. Parker et al. (2009) placed all study participants reporting symptoms of 
respiratory allergies or hay fever into a combined rhinitis group. Parker et al. (2009) 
linked annual averages of SO2, NO2, PM2.5, and PM2.5-10 and warm season (May to 
September) O3 averages to participant’s addresses through ambient air pollution and 
meteorological data collected from US EPA Air Quality System monitors. The authors 
adjusted their logistic regression models for survey year, poverty-level, race/ethnicity, 
age, family structure, insurance coverage, usual source of care, education of adult, 
urban-rural status, region, and median county-level income.  

Incidence, Hay Fever/Rhinitis 

In a multi-pollutant model, the coefficient and standard error are based on the odds 
ratio of 1.18 (95% CI: 1.09-1.27) for a 10 ppb increase in 24-hour mean, warm season 
O3 (Parker et al., 2009, Table 4).  

The Health Impact Function was adjusted from the daily 24-hour mean metric to the 
daily 8-hour max metric using a ratio of 1/1.53 = 0.65359 (inverse of the ratio of 8-hour 
max to 24-hour mean ozone) (Anderson and Bell 2010, Table 2). 

F.5 Asthma-Related Effects   
Table F-5 summarizes the core health impacts functions used to estimate the 
relationship between ozone and asthma exacerbation. Below, we present a brief 
summary of each of the studies and any items that are unique to the study. Based on 
advice from the SAB-HES (U.S. EPA-SAB 2004), regardless of the age ranges included in 
the source epidemiology studies, we extend the applied population to ages 6 to 18, 
reflecting the common biological basis for the effect in children in the broader age 
group. 

Table F-5. Core Health Impact Functions for Ozone and Asthma-Related Effects 

Effect Author Year Location Age Co-Poll Metric Beta Std Err Form Notes 

Asthma 
Symptoms, 
Cough 

Lewis et al. 2013 Detroit, MI 5-12  D8HourMax 0.00708  0.00372 Logistic All year 

Asthma 
Symptoms, 
Wheeze 

Lewis et al. 2013 Detroit, MI 5-12  D8HourMax 0.00764  0.00410 Logistic All year 

Asthma 
Symptoms, 

Lewis et al. 2013 Detroit, MI 5-12  D8HourMax 0.01140  0.00505 Logistic All year 

.000658.0112 ==⇒=
γ

σ
γ

σ ββ
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Effect Author Year Location Age Co-Poll Metric Beta Std Err Form Notes 

Chest 
tightness 

Asthma 
Symptoms, 
Shortness of 
breath 

Lewis et al. 2013 Detroit, MI 5-12  D8HourMax 0.00423  0.00386 Logistic All year 

Asthma 
Onset 

Tétreault et 
al. 

2016 Québec, Canada 0-17  Annual 
(D8HourMax) 

0.02075  0.00146 Log-
linear 

Warm 
season; 
separate 
HIFs for 
ages 0-4; 
5-17 

 

F.5.1 Lewis et al. (2013)   

Lewis et al. (2013) studied the effects of short-term O3 exposure on frequency of 
asthma symptoms in an asthmatic population of primarily lower-income, African 
American and Latino children (aged five-12 years) in East and Southwest Detroit, MI. 
Authors obtained health and demographic data through questionnaires filled out by 
parents or guardians for 14 consecutive days in each studied season. Questionnaires 
highlighted participant’s asthma symptoms (cough, wheeze, shortness of breath, chest 
tightness), demographic information, medication use, and presence of second-hand 
smoke. The authors acquired maximum one-hour and maximum 8-hour O3 
concentrations and meteorological data from two community-level monitors placed on 
East and Southwest Detroit, MI school rooftops. Lewis et al. (2013) implemented a 
combination of generalized estimating equations and alternative logistic regression 
models to estimate the associations between short-term O3 exposure and rate of 
asthma symptoms. Models adjusted for age, sex, location (Eastside or Southwest), race, 
household income, smoker in the home, season, and variables for companion home 
intervention study (control or intervention), time (pre- or post-intervention), and the 
interaction between intervention group status and time. Lewis et al. (2013) observed 
positive associations between short-term O3 exposure and asthma symptoms. 

Asthma Symptoms 

In single-pollutant models, the coefficient and standard error are based on the all year 
odds ratios of 1.12 (95% CI: 0.99-1.25) for cough, 1.13 (95% CI: 0.99-1.28) for wheeze, 
1.20 (95% CI: 1.02-1.40) for chest tightness, and 1.07 (95% CI: 0.95-1.21) for shortness 
of breath, all for a 16 ppb (interquartile range) increase in 8-hour maximum O3 
concentrations (five-day average lag) (Lewis et al. 2013, Figure 1C). 

F.5.2 Tétreault et al. (2016)   

Tétreault et al. (2016) investigated the effects of long-term O3 exposure on asthma 
onset in children (aged zero-12 years) from Québec, Canada. The study followed 
participants from the Québec Integrated Chronic Disease Surveillance System open 
birth cohort between 1999 and 2011. The authors defined new cases of asthma based 
on hospital discharge reports and physician diagnoses (two diagnoses within a two-
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year span). Monitor data (Canadian National Air Pollution Surveillance network) and 
land-use mixed effect models estimated warm season (June to August) O3 exposures. 
Authors assessed associations with asthma onset with both time of birth and time-
varying exposure models and adjusted for year of birth, sex, and indices of social and 
material deprivation. Tétreault et al. (2016) used Cox proportional hazard models to 
observe associations between long-term O3 exposure and asthma onset in children.  

As the physiology and etiology of lung development in children is similar in children 6-
17 (Baena-Cagnani et al., 2007, Guerra et al., 2004, Ochs et al., 2004, Sparrow et al., 
1991, Trivedi and Denton, 2019), we apply the 4-12 year age-stratified effect estimate 
from Tétreault et al. (2016) to children ages 4-17.  

Incidence, Asthma 

In a single-pollutant time-varying model, the coefficient and standard error were 
estimated from a warm-season hazard ratio of 1.07 (95% CI: 1.06-1.08) for a 3.26 ppb 
(interquartile range) increase in annual O3 concentrations (Tétreault et al. 2016, Table 
5). 

F.6 Sensitivity Analysis – General   
Table F-6 summarizes the ozone health impact functions considered by EPA to be 
sensitivity analyses. Below, we present a brief summary of each of the studies and any 
items that are unique to the study.  

Table F-6. Core Health Impact Functions for Ozone Sensitivity Analyses 

Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

Mortality, 
All Cause 

Di et al. 2017 Nationwide 65-99 PM2.5 Annual 
(D8HourMax) 

0.001094 0.000050 Log-
linear 

All Cause, warm season 

Incidence, 
Asthma 

Garcia et al. 2019 12 Southern 
California 
communities 

9-18  Annual 
(D8HourMax) 

0.016946 0.010941 Log-
linear 

All year 

Mortality, 
Respiratory 

Katsouyanni 
et al. 

2009 90 U.S. Cities 0-99 PM10 D1HourMax 0.000985 0.000667 Log-
linear 

Multi-pollutant, lag 1, 
warm season 

Mortality, 
Respiratory 

Katsouyanni 
et al. 

2009 90 U.S. Cities 0-99 PM10 D8HourMax 0.000985 0.000667 Log-
linear 

Multi-pollutant, lag 1, 
warm season, 8-hour 
max from 1-hour max 
using adjustment factor 
of 1.13, resulting in 
effective beta of 
0.001113. 

Mortality, 
Respiratory 

Katsouyanni 
et al. 

2009 90 U.S. Cities 0-99  D1HourMax 0.000767 0.000304 Log-
linear 

Single-pollutant, lag 1, 
warm season 

Mortality, 
Respiratory 

Katsouyanni 
et al. 

2009 90 U.S. Cities 0-99  D8HourMax 0.000767 0.000304 Log-
linear 

Single-pollutant, lag-1, 
warm season, 8-hour 
max from 1-hour max 
using adjustment factor 
of 1.13, resulting in 
effective beta of 
0.000867. 
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Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

Mortality, 
All Cause 

Turner et al. 2016 Nationwide 30-99 PM2.5 Annual 
(D8HourMax) 

0.001980 0.000500 Log-
linear 

All Cause, warm 
season, multi-pollutant 

Mortality, 
Respiratory 

Turner et al. 2016 Nationwide 30-99  Annual 
(D8HourMax) 

0.013103 0.001791 Log-
linear 

Single-pollutant 

Mortality, 
Respiratory 

Turner et al. 2016 Nationwide 30-99 PM2.5 Annual 
(D8HourMax) 

0.011333 0.001823 Log-
linear 

Multi-pollutant 

 

F.6.1   Di et al. (2017) 

Di et al. (2017) evaluated the relationship between long-term ozone exposure and all-
cause mortality in nearly 61 million U.S. Medicare enrollees (over the age of 64) 
through 460 million person-years of follow-up and roughly 22 million observed deaths. 
This cohort comprised approximately 15% of the total U.S. population, included people 
living in rural areas, and is one of the largest cohort studies published to date. The 
authors modeled warm season ozone exposure across the contiguous U.S. using a 
hybrid methodology that included land use regression, satellite data, and monitor data, 
and resolved estimations to 1 x 1-kilometer areas. Di et al. (2017) used two-pollutant 
Cox proportional-hazards models with a generalized estimating equation. The authors 
controlled for demographic characteristics, Medicaid eligibility, and area-level 
covariates. 

All-Cause Mortality  

In a two-pollutant model, the coefficient and standard error for ozone are estimated 
from the hazard ratio (1.011) and 95% confidence interval of (1.010-1.012) associated 
with a change in annual mean ozone exposure of 10.0 ppb (Di et al., 2017, Table 2 Main 
Analysis).    

F.6.2   Garcia et al. (2019) 

Garcia et al. (2019) examined the associations between long-term ozone exposure and 
asthma onset in children (aged nine-18 years) with no history of asthma in Southern 
California. The authors followed three waves of participants from the Children's Health 
Study for eight years between 1993 and 2014. Garcia et al. (2019) obtained health and 
demographic data from parents, guardians, or participants, who completed 
questionnaires annually. In order to calculate annual mean, community-level ozone 
exposure, the authors acquired daily eight-hour mean ozone concentrations through 
ambient air pollution monitors. Multi-level Poisson regression models with one-year lag 
showed no statistically significant associations between long-term ozone exposure and 
asthma onset in children. Models adjusted for demographic variables as well as factors 
pertaining to family medical history, environmental factors, and near-roadway 
pollution.  
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Incidence, Asthma 

In a single-pollutant, all year model, the coefficient and standard error were estimated 
from an incidence rate ratio of 0.86 (95% CI: 0.71-1.04) for an 8.9 ppb decrease in 
eight-hour mean ozone concentrations (Garcia et al. 2019, Table 2). For consistency 
with the other HIFs, we convert this to a rate ratio for an increase in ozone, by taking 
the inverse of the reported incidence rate ratio, giving a rate ratio of 1.163 (95% CI: 
0.962-1.408) for an 8.9 ppb increase in eight-hour mean ozone concentrations. 

F.6.3 Katsouyanni et al. (2009)   

See full study descriptionunder Katsouyanni et al. (2009) in Appendix F, Section F.1.1. 

Short-term Mortality, Respiratory (Multi-Pollutant) 

In a multi-pollutant model, the coefficient and standard error are based on the summer-
only penalized spline estimate of respiratory mortality of 0.99% (-0.33, 2.31%) per 10 
ppb increase in O3 lagged by 1 day (Katsouyanni et al. 2009, Table 24: Lag 1; Penalized 
splines; Controlling for PM10).  

The Health Impact Function was adjusted from the daily 1-hour max metric to the daily 
8-hour max metric using a ratio of 1.13 (ratio of 1-hour max to 8-hour max ozone) 
(Anderson and Bell 2010, Table 2). 

Short-term Mortality, Respiratory (Single-Pollutant) 

In a single-pollutant model, the coefficient and standard error are based on the 
summer-only penalized spline estimate of respiratory mortality of 0.77% (0.17, 1.37%) 
per 10 ppb increase in O3 lagged by 1 day (Katsouyanni et al. 2009, Table 24: Lag 1; 
Penalized splines; O3 Results).  

The Health Impact Function was adjusted from the daily 1-hour max metric to the daily 
8-hour max metric using a ratio of 1.13 (ratio of 1-hour max to 8-hour max ozone) 
(Anderson and Bell 2010, Table 2). 

F.6.4 Turner et al. (2016)   

See full study description under Turner et al. (2016) in Appendix F, Section F.1.2. 

Long-term Mortality, All Cause 

In a multi-pollutant model, the coefficient and standard error are based on the warm-
season specific hazard ratio of 1.02 (1.01-1.03) per 10 ppb increase in seasonal average 
of daily 8-hour maximum O3 concentrations (Turner et al. 2016, Table E9: HBM O3, 
multipollutant model data, fully adjusted).  
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Long-term Mortality, Respiratory (Single-Pollutant) 

In a single-pollutant model, the coefficient and standard error are based on the warm-
season specific hazard ratio of 1.14 (1.10-1.18) per 10 ppb increase in seasonal average 
of daily 8-hour maximum O3 concentrations (Turner et al. 2016, Table E5: HBM O3, 
1982-2004, fully adjusted plus ecological covariate).  

Long-term Mortality, Respiratory (Multi-Pollutant) 

In a multi-pollutant model, the coefficient and standard error are based on the warm-
season specific hazard ratio of 1.12 (1.08-1.16) per 10 ppb increase in seasonal average 
of daily 8-hour maximum O3 concentrations (Turner et al. 2016, Table E7: HBM O3, 
1982-2004, multipollutant, fully adjusted).  

F.7 Sensitivity Analysis – At-Risk Populations 
Table F-7 summarizes the ozone health impact functions considered by EPA to be 
sensitivity analyses that characterize risk experienced by certain subpopulations. 
Below, we present a brief summary of each of the studies and any items that are unique 
to the study.  

Table F-7. Core Health Impact Functions for Ozone Sensitivity Analyses of At-Risk 
Populations 

Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

HA, All 
Respiratory 

Cakmak et 
al. 

2006 10 Canadian 
Cities 

0-99  D24HourMean 0.002033 0.000580 Logistic Female 

HA, All 
Respiratory 

Cakmak et 
al. 

2006 10 Canadian 
Cities 

0-99  D8HourMax 0.002033 0.000580 Logistic Female, 8-hour max 
from 24-hour mean 
using adjustment 
factor of 0.654, 
resulting in effective 
beta of 0.001328. 

HA, All 
Respiratory 

Cakmak et 
al. 

2006 10 Canadian 
Cities 

0-99  D24HourMean 0.002530 0.000519 Logistic Male 

HA, All 
Respiratory 

Cakmak et 
al. 

2006 10 Canadian 
Cities 

0-99  D8HourMax 0.002530 0.000519 Logistic Male, 8-hour max 
from 24-hour mean 
using adjustment 
factor of 0.654, 
resulting in effective 
beta of 0.001653. 

Mortality, 
Respiratory 

Jerrett et al. 2009 Nationwide 
US, 96 MSAs 

30-99  Annual 
(D1HourMax) 

0.003922 0.000972 Log-
linear Female 

Mortality, 
Respiratory 

Jerrett et al. 2009 Nationwide 
US, 96 MSAs 

30-99  Annual 
(D8HourMax) 

0.003922 0.000972 Log-
linear 

Female, 8-hour max 
from 1-hour max 
using adjustment 
factor of 1.13, 
resulting in effective 
beta of 0.004432. 

Mortality, 
Respiratory 

Jerrett et al. 2009 Nationwide 
US, 96 MSAs 

30-99  Annual 
(D1HourMax) 

0.000995 0.001257 Log-
linear Male 

Mortality, Jerrett et al. 2009 Nationwide 30-99  Annual 0.000995 0.001257 Log- Male, 8-hour max 
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Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

Respiratory US, 96 MSAs (D8HourMax) linear from 1-hour max 
using adjustment 
factor of 1.13, 
resulting in effective 
beta of 0.001124. 

Mortality, 
All Cause 

Katsouyanni 
et al. 

2009 Nationwide 
US, 90 cities 

0-74  D1HourMax 0.000698 0.000213 Logistic Age <75 

Mortality, 
All Cause 

Katsouyanni 
et al. 

2009 Nationwide 
US, 90 cities 

0-74  D8HourMax 0.000698 0.000213 Logistic Age <75, 8-hour max 
from 1-hour max 
using adjustment 
factor of 1.13, 
resulting in effective 
beta of 0.000788. 

Mortality, 
All Cause 

Katsouyanni 
et al. 

2009 Nationwide 
US, 90 cities 

75-99  D1HourMax 0.000618 0.000233 Logistic Age ≥75 

Mortality, 
All Cause 

Katsouyanni 
et al. 

2009 Nationwide 
US, 90 cities 

75-99  D8HourMax 0.000618 0.000233 Logistic Age ≥75, 8-hour max 
from 1-hour max 
using adjustment 
factor of 1.13, 
resulting in effective 
beta of 0.000698. 

HA, Lower 
Respiratory 
Infection 

Lin et al. 2005 Toronto, 
Canada 

0-14  D1HourMax 0.007592 0.005232 Logistic 
Female 

HA, Lower 
Respiratory 
Infection 

Lin et al. 2005 Toronto, 
Canada 

0-14  D8HourMax 0.007592 0.005232 Logistic Female, 8-hour max 
from 1-hour max 
using adjustment 
factor of 1.14, 
resulting in effective 
beta of 0.008655. 

HA, Lower 
Respiratory 
Infection 

Lin et al. 2005 Toronto, 
Canada 

0-14  D1HourMax 0.003530 0.004524 Logistic 
Male 

HA, Lower 
Respiratory 
Infection 

Lin et al. 2005 Toronto, 
Canada 

0-14  D8HourMax 0.003530 0.004524 Logistic Male, 8-hour max 
from 1-hour max 
using adjustment 
factor of 1.14, 
resulting in effective 
beta of 0.004025. 

Emergency 
Room Visits, 
Asthma 

Mar and 
Koenig 

2009 Seattle, 
Washington 

0-17  D8HourMax 0.010436 0.004358 Log-
linear Age <18 

Emergency 
Room Visits, 
Asthma 

Mar and 
Koenig 

2009 Seattle, 
Washington 

18-99  D8HourMax 0.003922 0.002688 Log-
linear Age ≥18 

Mortality, 
All Cause 

Medina-
Ramon & 
Schwartz 

2008 Nationwide 
US, 48 cities 

0-64  D8HourMean -0.000130 0.000102 Logistic 
Age <65 

Mortality, 
All Cause 

Medina-
Ramon & 
Schwartz 

2008 Nationwide 
US, 48 cities 

65-99  D8HourMean 0.000965 0.000235 Logistic 
Age ≥65 

Mortality, 
All Cause 

Medina-
Ramon & 
Schwartz 

2008 Nationwide 
US, 48 cities 

0-99  D8HourMean 0.000936 0.00024 Logistic 
Female, Age 0-99 

Mortality, 
All Cause 

Medina-
Ramon & 

2008 Nationwide 
US, 48 cities 

0-99  D8HourMean 0.000359 0.000038 Logistic Male, Age 0-99 
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Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

Schwartz 

Emergency 
Room Visits, 
Asthma 

Paulu and 
Smith 

2008 Maine 2-14  D8HourMax 0.010436 0.005027 Logistic 
Age 2-14 

Emergency 
Room Visits, 
Asthma 

Paulu and 
Smith 

2008 Maine 15-34  D8HourMax 0.014842 0.003524 Logistic 
Age 15-34 

Emergency 
Room Visits, 
Asthma 

Paulu and 
Smith 

2008 Maine 2-99  D8HourMax 0.011333 0.002736 Logistic 
Female, Age 2-99 

Emergency 
Room Visits, 
Asthma 

Paulu and 
Smith 

2008 Maine 2-99  D8HourMax 0.010436 0.003222 Logistic 
Male, Age 2-99 

Emergency 
Room Visits, 
Asthma 

Villeneuve 
et al. 

2007 Edmonton, 
Canada 

2-4  D8HourMax 0.003237 0.003342 Logistic Age 2-4 

Emergency 
Room Visits, 
Asthma 

Villeneuve 
et al. 

2007 Edmonton, 
Canada 

5-14  D8HourMax 0.007279 0.002357 Logistic Age 5-14 

Emergency 
Room Visits, 
Asthma 

Villeneuve 
et al. 

2007 Edmonton, 
Canada 

15-14  D8HourMax 0.005798 0.00179 Logistic Age 15-14 

Emergency 
Room Visits, 
Asthma 

Villeneuve 
et al. 

2007 Edmonton, 
Canada 

45-64  D8HourMax 0.006296 0.003275 Logistic Age 45-64 

Emergency 
Room Visits, 
Asthma 

Villeneuve 
et al. 

2007 Edmonton, 
Canada 

65-74  D8HourMax 0.007279 0.005544 Logistic Age 65-74 

Emergency 
Room Visits, 
Asthma 

Villeneuve 
et al. 

2007 Edmonton, 
Canada 

75-99  D8HourMax -0.000558 0.006684 Logistic Age 75-99 

Mortality, 
All Cause 

Zanobetti 
and 
Schwartz 

2008 Nationwide 
US, 48 cities 

0-20  D8HourMean 0.00008 0.000252 Logistic Age 0-20 

Mortality, 
All Cause 

Zanobetti 
and 
Schwartz 

2008 Nationwide 
US, 48 cities 

21-30  D8HourMean 0.0001 0.000392 Logistic Age 21-30 

Mortality, 
All Cause 

Zanobetti 
and 
Schwartz 

2008 Nationwide 
US, 48 cities 

31-40  D8HourMean 0.00007 0.000229 Logistic Age 31-40 

Mortality, 
All Cause 

Zanobetti 
and 
Schwartz 

2008 Nationwide 
US, 48 cities 

41-50  D8HourMean 0.00008 0.000178 Logistic Age 41-50 

Mortality, 
All Cause 

Zanobetti 
and 
Schwartz 

2008 Nationwide 
US, 48 cities 

51-60  D8HourMean 0.000539 0.000178 Logistic Age 51-60 

Mortality, 
All Cause 

Zanobetti 
and 
Schwartz 

2008 Nationwide 
US, 48 cities 

61-70  D8HourMean 0.000379 0.000114 Logistic Age 61-70 

Mortality, 
All Cause 

Zanobetti 
and 
Schwartz 

2008 Nationwide 
US, 48 cities 

71-80  D8HourMean 0.000499 0.000089 Logistic Age 71-80 

Mortality, Zanobetti 2008 Nationwide 81-99  D8HourMean 0.00029 0.000079 Logistic Age 81-99 
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Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

All Cause and 
Schwartz 

US, 48 cities 

 
F.7.1 Cakmak et al. (2006)   

Cakmak et al. (2006) examined the relationship between daily average O3 
concentrations and hospital admissions for respiratory causes (ICD-9 466, 480-486, 
490, 491, 492, 493, 494, and 496) among residents of 10 Canadian cities (Calgary, 
Edmonton, Halifax, London, Ottawa, Saint John, Toronto, Vancouver, Windsor, and 
Winnipeg). Data on 215,544 respiratory hospitalizations were obtained from the 
Canadian Institute for Health Information. Daily 24-hour average O3 concentrations in 
all seasons were estimated using the average of data from all available monitors within 
each city. The authors ran city-specific multi-pollutant Poisson regression models by 
sex, education level, and income quartile using time lags of 0 to 5 days. Models 
controlled for day of the week, temperature, humidity, and barometric pressure. Pooled 
estimates across all 10 cities were calculated by using a random-effects model.  

Hospital Admissions, All Respiratory 

In single-pollutant models, the coefficient and standard error are estimated from a 
percentage increase of 3.6% (95% CI: 1.6-5.7%) for females and 4.5% (95% CI: 2.6-
6.3%) for males for a 17.4 ppb increase in daily 24-hour average O3 concentrations 
(Cakmak et al. 2006, Table 3).  

The Health Impact Function was adjusted from the daily 24-hour mean metric to the 
daily 8-hour max metric using a ratio of 1/1.53 = 0.65359 (inverse of the ratio of 8-hour 
max to 24-hour mean ozone) (Anderson and Bell 2010, Table 2). 

F.7.2 Jerrett et al. (2009)   

Jerrett et al. (2009) examined the potential contribution of long-term ozone exposure to 
the risk of death from cardiopulmonary causes and specifically to death from 
respiratory causes. Data from the study cohort of the American Cancer Society Cancer 
Prevention Study II were correlated with air-pollution data from 96 metropolitan 
statistical areas in the United States. Associations between warm season ozone 
concentrations and the risk of death were evaluated with the use of standard and 
multilevel Cox regression models. In single-pollutant models, increased concentrations 
of either PM2.5 or ozone were significantly associated with an increased risk of death 
from cardiopulmonary causes. In two-pollutant models, PM2.5 was associated with the 
risk of death from cardiovascular causes, whereas ozone was associated with the risk of 
death from respiratory causes. The estimated relative risk of death from respiratory 
causes that was associated with an increment in ozone concentration of 10 ppb was 
1.040 (95% confidence interval, 1.010 to 1.067). The association of ozone with the risk 
of death from respiratory causes was insensitive to adjustment for confounders and to 
the type of statistical model used. The authors concluded that they were not able to 
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detect an effect of ozone on the risk of death from cardiovascular causes when the 
concentration of PM2.5 was taken into account. But they did demonstrate a significant 
increase in the risk of death from respiratory causes in association with an increase in 
ozone concentration.  

Mortality, Respiratory (ICD-9 code 460-519) 

In single-pollutant models, the coefficient and standard error are estimated from a 
relative risk of 1.04 (95% CI: 1.03-1.07) for females and 1.01 (95% CI: 0.99-1.04) for 
males for a 10 ppb change in ambient ozone concentration measured from April to 
September during the years from 1977 to 2000 (Jerrett et al. 2009, Table 4).  

The Health Impact Function was adjusted from the daily 1-hour max metric to the daily 
8-hour max metric using a ratio of 1.13 (ratio of 1-hour max to 8-hour max ozone) 
(Anderson and Bell 2010, Table 2). 

F.7.3 Katsouyanni et al. (2009)   

See full study description under Katsouyanni et al. (2009) in Appendix F, Section F.1.1. 

Short-term Mortality, All Cause 

In single pollutant models, the coefficient and standard error are based on the summer-
only penalized spline estimate of all-cause mortality of 0.70% (0.28, 1.12%) for ages 
<75 and 0.62% (0.16, 1.08%) for ages ≥75 per 10 ppb increase in O3 from distributed 
lag days (Katsouyanni et al. 2009, Table 24: Distributed Lags; Penalized splines; O3 
Results).  

The Health Impact Function was adjusted from the daily 1-hour max metric to the daily 
8-hour max metric using a ratio of 1.13 (ratio of 1-hour max to 8-hour max ozone) 
(Anderson and Bell 2010, Table 2). 

F.7.4 Lin et al. (2005)   

Lin et al. (2005) examined the relationship between short term O3 exposures and 
hospital admissions for lower respiratory infections (ICD-9 464, 466, 480-487) in a 
case-crossover study among Toronto residents under the age of 15 between 1998 and 
2001. Data on 6,782 hospitalizations were obtained from the Discharge Abstract 
Database. Daily 1-hour maximum O3 concentrations in all seasons were obtained from 
seven monitoring stations in the National Air Pollution Surveillance system. The 
authors ran conditional logistic regression models controlling for temperature and 
weather conditions using 1- to 7-day average lags.  

Hospital Admissions, All Respiratory 

In multi-pollutant models adjusted for PM2.5 and PM10-2.5, the coefficient and standard 
error are estimated from an odds ratio of 1.18 (95% CI: 0.94-1.47) for females and 1.08 



 Appendix F: Core Ozone Health Impact Functions in U.S. Setup 

BenMAP-CE User’s Manual Appendices March 2023 
F-19 

(95% CI: 0.89-1.31) for males for a 21.8 ppb increase in daily 1-hour maximum O3 
concentrations with a 4-day average lag (Lin et al. 2005, Table 3 (Adjusted B)).  

The Health Impact Function was adjusted from the daily 1-hour max metric to the daily 
8-hour max metric using a ratio of 1.13 (ratio of 1-hour max to 8-hour max ozone) 
(Anderson and Bell 2010, Table 2). 

F.7.5 Mar and Koenig (2009)   

Mar and Koenig (2009) evaluated the relationship between outdoor ozone in the 
summer and asthma aggravation. The authors used hospital data on daily asthma cases 
from 1998 to 2002 in Seattle with local monitored PM2.5 and ozone concentrations to 
assess the association between asthma visits to the emergency department and air 
pollutants. They analyzed 1-hour and 8-hour max ozone concentrations at two 
monitors in Greater Seattle. Asthma ED visits were analyzed at 0 through 5-day lags. 
The authors found that ozone exposure exacerbates asthma in people in the Seattle 
area, especially in children. Authors found that in adults during the warmer months 
between May and September, a 10 ppb increase in 8-hour maximum ozone 
concentration is associated with relative risk of asthma-related ED visits of 1.08 (1.02, 
1.14) with a 4-day lag. In children, during the warmer months, a 10 ppb increase in 8-
hour maximum ozone concentration is associated with relative risk of asthma-related 
ED visits of 1.11 (1.02, 1.21) with a 3-day lag. The difference in lag and relative risk 
between children and adults suggests that children are more immediately responsive to 
the adverse effects of ozone exposure.  

Emergency Room Visits, Asthma 

In single-pollutant models, the coefficient and standard error are estimated from a 
relative risk of 1.11 (95% CI: 1.02-1.21) for age <18 and 1.04 (95% CI: 0.99-1.10) for 
age ≥18 for a 10 ppb increase in daily 8-hour maximum summer ozone concentration 
with a 3-day average lag (Mar and Koenig, 2009, Table 5 and Table 6).  

F.7.6 Medina-Ramon & Schwartz (2008)   

Medina-Ramon & Schwartz (2008) evaluated short-term O3 exposure and all-cause 
mortality among residents of all ages in 48 U.S. cities from 1989-2000 using a case-only 
approach. Data on 2,729,640 non-accidental deaths was obtained from the National 
Center for Health Statistics. The authors estimated 8-hour daily mean ozone 
concentrations (warm season, May to September) for each city using daily ozone levels 
reported by the U.S. EPA Aerometric Retrieval System. The authors ran city-specific 
conditional logistic regressions controlling for seasonality, temperature, and day of the 
week and pooled the results across cities. Results were presented by socio-
demographic characteristics and chronic conditions. 

Mortality, All Cause 

The O3-mortality risk estimates for at-risk subpopulations reported in Medina-Ramon & 
Schwartz (2008) required additional modification in order to use those results to 
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develop health impact functions.  The authors presented excess risk estimates for each 
subpopulation as the additional percent change in mortality for persons who have the 
condition, compared to persons without the condition. For our populations of interest, 
these subgroups were persons age 65 or older compared to those younger than 65, and 
females relative to males. However, they did not report the risk estimate for these 
comparison groups, so in order to estimate the total excess risk for each exposed at-risk 
group, we needed to first back-calculate the excess risk for the comparison group 
without the factor of interest. We accomplished this by assuming that the authors’ 
overall reported excess risk for the full sample of 0.65% (95% confidence interval = 
0.38% to 0.93%) could be expressed as a weighted average of the unreported excess 
risk (“x”) and the full excess risk for the at-risk group, which would be expressed as the 
sum of x and the reported excess risk from Medina-Ramon & Schwartz (2008) Table 2, 
where the weights are calculated using the total and at-risk group sample sizes in Table 
1 of that paper. For example, to calculate the total excess risks for the females in the 
sample, we used the following equation: 

ERTotal =  
ERMale(PopMale) + ER𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(PopFemale)

PopTotal
  

where ERTotal is the full sample excess risk of 0.65%; ERFemale is the excess risk of ozone 
exposures for females; ERMale is the excess risk of ozone exposures for males; PopTotal is 
the total sample population; and PopFemale and PopMale are the size of the female and 
male subsets of the sample population, respectively. We also know from Table 2 of that 
paper that: 

ERFemale =  ERMale + 0.58 % 

Substituting and using the available information from Medina-Ramon & Schwartz 
(2008) Tables 1 and 2, we can solve for ERMale and then ERFemale:  

0.65% =  
ERMale(1,365,937) + (0.58% + ERMale)(1,363,703)

2,729,640
 

 

ERMale = 0.36 % 

and 

ERFemale =  0.36% + 0.58% = 0.94% 

We then used the full excess risk value for the female subpopulation to derive a health 
impact function for ozone-related mortality for females. Final calculated excess risks 
are 0.94% (0.47-1.42%) for females aged 0-99; 0.36% (0.29-0.44%) for males aged 0-
99, -0.13% (-0.33-0.07%) for both sexes aged 0-64, and 0.97% (0.51-1.44%) for both 
sexes aged 65-99. 
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F.7.7 Paulu and Smith (2008)   

Paulu and Smith (2008) conducted a case-crossover analysis to evaluate the 
relationship between daily ozone concentrations and emergency room visits for asthma 
(ICD-9 493) among Maine residents aged 2 and older from 2000 to 2003. Data on 8,020 
asthma-related ER visits was obtained from the Maine Health Data Organization. Daily 
8-hour maximum O3 concentrations were computed from two monitor sites situated in 
or near Portland, ME and data was obtained from the Maine Department of 
Environmental Protection, Bureau of Air Quality. The authors defined the warm season 
as May 22-September 10 (2000) and May 23-September 11 (2001-2003). The authors 
ran conditional logistic regression models stratified by sex and age groups (2–14, 15–
34, 35–64, and ≥65 years) controlling for temperature, humidity, and day after major 
holidays as well as PM2.5 in co-pollutant models. Paulu and Smith (2008) found that 
excess risk was concentrated among females aged 15 to 34 and males younger than 15. 

Emergency Room Visits, Asthma 

In single-pollutant models for both sexes, the coefficient and standard error are 
estimated from an excess risk of 11% (1-23%) for ages 2-14 and 16% (8-24%) for ages 
15-34 for a 10 ppb increase in average daily 8-hour maximum ozone (lags 0-3 days) 
(Paulu and Smith, 2008, Figure 1 text). 

In single-pollutant models for ages 2 and above, the coefficient and standard error are 
estimated from an excess risk of 12% (6-18%) for females and 11% (4-18%) for males 
for a 10 ppb increase in average daily 8-hour maximum ozone (lags 0-3 days) (Paulu 
and Smith, 2008, Figure 1 text). 

F.7.8 Villeneuve et al. (2007)   

Villeneuve et al. (2007) evaluated the relationship between short-term ozone exposure 
and emergency room visits for asthma (ICD-9 493) among residents of Edmonton, 
Canada aged 2 and above from 1992 to 2002 in a case-crossover study. Data on 57,912 
asthma-related ER visits was provided by Capital Health. Daily 8-hour maximum O3 
concentrations were obtained from automated fixed-site monitoring stations 
maintained by Environment Canada as part of the National Air Pollution Surveillance 
Network. The monitors measured both warm season (April-September) and cold 
season (October-March) ozone concentrations. The authors ran conditional logistic 
regression models controlling for temperature, humidity, influenza, and aeroallergens. 
Villeneuve et al. (2007) found associations between ozone and asthma emergency room 
visits in the warm season and observed the strongest effects in young children. 

Emergency Room Visits, Asthma 

In single-pollutant models, the coefficient and standard error are estimated from odds 
ratios of 1.06 (0.94-1.19) for ages 2-4; 1.14 (1.05-1.24) for ages 5-14; 1.11 (1.04-1.18) 
for ages 15-44; 1.12 (1.00-1.26) for ages 45-64; 1.14 (0.94-1.39) for ages 65-74; and 
0.99 (0.78-1.25) for ages 75-99 for a 18 ppb increase in average daily 8-hour maximum 
warm season ozone (5-day average lag) (Villeneuve et al., 2007, Tables 4, 5, 6, 7, 8, 9).  
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F.7.9 Zanobetti and Schwartz (2008b)   

Zanobetti and Schwartz (2008b) evaluated the relationship between short-term ozone 
exposure and all-cause mortality across 48 U.S. cities (1989-2000) for all ages in a case-
crossover study. Data on 6,951,395 total deaths was provided by the National Center 
for Health Statistics. Daily 8-hour mean O3 concentrations were obtained from the U.S. 
EPA Air Quality System Technology Transfer Network for all seasons. The authors ran 
conditional logistic regression models by season, month, and age group (0-20, 21-30, 
31-40, 41-50, 51-60, 61-70, 71-80, 80+) controlling for temperature, dew point, and day 
of the week.  

Mortality, All Cause 

In single-pollutant models, the coefficient and standard error are estimated from an 
excess risk of 0.08% (-0.42-0.57%) for ages 0-20; 0.1% (-0.67-0.87%) for ages 21-30; 
0.07% (-0.38-0.52%) for ages 31-40; 0.08% (-0.27-0.43%) for ages 41-50; 0.54% (0.19-
0.89%) for ages 51-60; 0.38% (0.16-0.61%) for ages 61-70; 0.5% (0.32-0.67%) for ages 
71-80; and 0.29% (0.13-0.44%) for ages 81-99 for a 10 ppb increase in average daily 8-
hour mean all season ozone (Zanobetti and Schwartz 2008b, Table 2).  
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Appendix G. Additional Health Impact Functions in U.S. Setup 

In this Appendix, we present additional health impact functions for estimating PM2.5 
and Ozone-related adverse health effects. Unlike Appendices E and F, these functions 
are included in the U.S. Setup but are not currently used by the U.S. EPA in regulatory 
impact analyses. For the health impact functions currently used by EPA, see the 
following page: https://www.epa.gov/benmap/benmap-community-edition. For Ozone 
Health Impact Functions, click the “U.S. EPA approach for quantifying and valuing ozone 
effects” link. For PM2.5 Health Impact Functions, click the “U.S. EPA approach for 
quantifying and valuing PM effects” link. 

G.1 Additional PM2.5 Health Impact Functions 
Section G.1 summarizes the additional health impact functions for PM2.5 included in 
BenMAP-CE.   

G.1.1  Long-term Mortality   
There are two types of exposure to PM that may result in premature mortality. Short-
term exposure may result in excess mortality on the same day or within a few days of 
exposure. Long-term exposure over, say, a year or more, may result in mortality in 
excess of what it would be if PM levels were generally lower, although the excess 
mortality that occurs will not necessarily be associated with any particular episode of 
elevated air pollution levels. In other words, long-term exposure may capture a facet of 
the association between PM and mortality that is not captured by short-term exposure. 
Table G-1 lists the additional long-term mortality health impact functions.   

Table G-1. Additional Health Impact Functions for Particulate Matter and Long-
Term Mortality*  

Effect Author Year Location Age Metric Beta Std Err Form Notes 

Mortality, 
All Cause 

Expert A 2006  30-99 Annual 0.015180  Log-linear  

Mortality, 
All Cause 

Expert B 2006  30-99 Annual 0.012620  Log-linear Range >10 to 30 µg. 
Unconditional dist. 2% 
no causality included. 

Mortality, 
All Cause 

Expert B 2006  30-99 Annual 0.011950  Log-linear Range 4 to 10 µg. 
Unconditional dist. 2% 
no causality included. 

Mortality, 
All Cause 

Expert C 2006  30-99 Annual 0.011930  Log-linear  

Mortality, 
All Cause 

Expert D 2006  30-99 Annual 0.008380  Log-linear Unconditional dist. 5% 
no causality included 

Mortality, 
All Cause 

Expert E 2006  30-99 Annual 0.019670  Log-linear Unconditional dist. 1% 
no causality included 

Mortality, 
All Cause 

Expert F 2006  30-99 Annual 0.011440  Log-linear Range >7 to 30 µg 

Mortality, 
All Cause 

Expert F 2006  30-99 Annual 0.009370  Log-linear Range 4 to 7 µg 

https://www.epa.gov/benmap/benmap-community-edition
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Effect Author Year Location Age Metric Beta Std Err Form Notes 

Mortality, 
All Cause 

Expert G 2006  30-99 Annual 0.006970  Log-linear Unconditional dist. 
30% no causality 
included 

Mortality, 
All Cause 

Expert H 2006  30-99 Annual 0.008700  Log-linear  

Mortality, 
All Cause 

Expert I 2006  30-99 Annual 0.011810  Log-linear Unconditional dist. 5% 
no causality included 

Mortality, 
All Cause 

Expert J 2006  30-99 Annual 0.009620  Log-linear  

Mortality, 
All Cause 

Expert K 2006  30-99 Annual 0.006890  Log-linear Range >16 to 30. No 
threshold. Conditional 
dist. 

Mortality, 
All Cause 

Expert K 2006  30-99 Annual 0.003940  Log-linear Range 4 to 16 µg. No 
threshold. Conditional 
dist. 

Mortality, 
All Cause 

Expert K 2006  30-99 Annual 0.003940  Log-linear Range 4 to 16 µg. 
Threshold 0 to 5 µg. 
Conditional dist. 

Mortality, 
All Cause 

Expert K 2006  30-99 Annual 0.003940  Log-linear Range 4 to 16 ug. 
Threshold 5 to 10 µg. 
Conditional dist. 

Mortality, 
All Cause 

Expert K 2006  30-99 Annual 0   Range >16 to 30. 
Uniform distribution. 
No causality. 

Mortality, 
All Cause 

Expert K 2006  30-99 Annual 0   Range 4 to 16 ug. 
Uniform distribution. 
No causality. 

Mortality, 
All Cause 

Expert L 2006  30-99 Annual 0.009340  Log-linear Range >10 to 30 µg. 
Unconditional dist. 1% 
no causality included. 

Mortality, 
All Cause 

Expert L 2006  30-99 Annual 0.007390  Log-linear Range 4 to 10 µg. 
Unconditional dist. 
25% no causality 
included 

Short-term 
Mortality, 
Non-
Accidental 

Baxter et al. 2017 77 U.S. cities 0-99 D24HourMean 0.000329 0.000102 Log-linear PM PA 

Short-term 
Mortality, 
All Cause 

Ito et al. 2013 150 U.S. 
cities 

0-99 D24HourMean 0.000145 0.000075 Log-linear PM PA 

Mortality, 
IHD 

Jerrett et al. 2017 Nationwide 30-99 Annual 0.013976 0.001775 Log-linear PM PA 

Mortality, 
All Cause 

Krewski et al. 2009 116 U.S. 
cities 

30-99 Annual 0.005827 0.000963 Log-linear  

Mortality, 
IHD 

Krewski et al. 2009 116 U.S. 
cities 

30-99 Annual 0.021511 0.002058 Log-linear Mortality, IHD 

Mortality, 
Lung 
Cancer 

Krewski et al. 2009 116 U.S. 
cities 

30-99 Annual 0.013103 0.003795 Log-linear Mortality, Lung Cancer 

Mortality, 
All Cause 

Laden et al. 2006 6 cities 25-99 Annual 0.014842 0.004170 Log-linear  



 Appendix G:  Additional Health Impact Functions in U.S. Setup 

BenMAP-CE User’s Manual Appendices March 2023 
G-3 

Effect Author Year Location Age Metric Beta Std Err Form Notes 

Mortality, 
All Cause 

Lepeule et al. 2012 6 Cities 25-99 Annual 0.013103 0.003347 Log- linear  

Mortality, 
All Cause 

Pope et al. 2002 51 cities 30-99 Annual 0.005827 0.002157 Log-linear  

Mortality, 
IHD 

Pope et al. 2015 Nationwide 30-99 Annual 0.013103 0.001791 Log-linear PM PA 

Mortality, 
All Cause 

Thurston et 
al. 

2016 100 U.S. 
metro areas 

55-85 Annual 0.002956 0.001245 Log-linear PM PA 

Mortality, 
Lung 
Cancer 

Turner et al. 2016 Nationwide 30-99 Annual 0.008618 0.003032 Log-linear PM PA 

Mortality, 
All Cause 

Woodruff et 
al. 

1997 86 cities Infant Annual 0.003922 0.001221 Logistic  

Mortality, 
All Cause 

Woodruff et 
al. 

2006 204 
counties 

Infant Annual 0.006766 0.007339 Logistic  

Short-term 
Mortality, 
All Cause 

Zanobetti et 
al. 

2014 180 U.S. 
counties 

65-99 D24HourMean 0.000638 0.000109 Log-linear PM PA 

*Unless specified as short-term mortality. 

 
G.1.1.1   Expert Functions   

In this section, we describe the approach taken to incorporate into BenMAP 
concentration- response (C-R) functions that were obtained through expert elicitation 
for EPA (IEc, 2006).    

We have specified expert distributions for the PM2.5 effect either as truncated 
parametric distributions or as non-parametric distributions. Therefore they can only be 
included in BenMAP in the form of custom distribution tables containing 15,000 
random draws (with replacement) from an underlying distribution. We first describe 
the way these custom distribution tables were created. Then we explain how these 
custom distribution tables should be handled in a configuration file to represent the 
expert-specified distribution as closely as possible.   

Note that the table on page 3-30 of the expert elicitation report (IEc, 2006) refers to the 
non-parametric distributions as “custom” distributions. However, BenMAP refers to 
distribution tables that are supplied in the form of a simulated draw as “custom 
distribution tables”. In order to avoid confusion in terminology, we will call the expert-
specified distributions, which did not have a parametric shape, “non-parametric” expert 
distributions.   

We divided the experts into two groups - those who specified a parametric distribution 
and those who specified a non-parametric distribution. This division was necessary 
because the two groups required different methods for generating the custom 
distribution tables. We describe the respective algorithms below and then provide an 
assessment of the results for each expert.  
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G.1.1.1.1  Parametric Distributions   

Experts A, C, D, E, G, I, J, and K chose parametric distribution functions to represent 
their subjective beliefs about the percent change in risk associated with an increase in 
PM2.5. In particular, they specified the following characteristics of the distribution:   

• The shape (e.g., Normal, Triangular, Weibull)   

• The truncation points (i.e., minimum and/or maximum)   

• Two or three percentile points   

• The likelihood that the association is causal and whether the function includes that 
(i.e., whether the function is conditional on the association being causal or 
unconditional).   

There were two types of inconsistencies encountered in these specifications:   

(1) The experts who chose Normal or Weibull shapes for their distributions also 
specified minimum and/or maximum values at which there could be an effect. The 
Normal distribution has an unlimited support from -8 to + 8. The Weibull distribution 
has support (l + 8), where l is a location parameter that can be any value on the real 
line. The specification of a minimum or a maximum value for the effect is therefore 
inconsistent with specifying these distributions.  Therefore, we interpreted these 
experts’ distributions as truncated Normal or truncated Weibull distributions. In other 
words, we assumed that the shape of the distribution is Normal or Weibull between the 
truncation points.   

(2) Experts A, C, and J indicated that they included the likelihood of causality in their 
subjective distributions. However, the continuous parametric distributions specified 
were inconsistent with the causality likelihoods provided by these experts. Because 
there was no way to reconcile this, we chose to interpret the distributions of these 
experts as unconditional and ignore the additional information on the likelihood of 
causality. For example, Expert A specified a truncated Normal distribution with a 
minimum 0 and a maximum 4. The expert also indicated that the likelihood of causality 
is 95 percent and it is included in the distribution. This implies that the 5th percentile of 
the truncated Normal distribution should be zero. The minimum and 5th percentile of 
the distribution both being zero imply a density with a large (discrete) mass at zero. 
This, however, is not consistent with specifying a continuous Normal density. (In the 
case of Expert A, in addition, he specified a 5th percentile value of 0.29, whereas a 5 
percent chance of non-causality would imply a 5th percentile value of 0.)   

In order to create a random draw from a parametric distribution it is not sufficient to 
know its shape and truncation points. In addition, one needs to know the values of 
parameters that distinguish this particular distribution from a class of similarly shaped 
distributions with identical truncation points. Experts D and I reported parameter 
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values of their subjective distributions (see details in Table 1). Therefore, we simply 
drew 15,000 times from each of their distributions.   

However, the only information, in addition to the shape and truncation points, which 
the other experts provided was the percentile points. To derive the parameter values of 
interest, we used this information as follows:   

Let F(x;å θ,min,max) be a truncated continuous parametric (cumulative) distribution 
function with (vector of) parameters θ and truncation points min and max. The nth 
percentile point is defined as the value xn such that F(xn; θ,min,max)=n/100. Thus, if 
we know that the expert distribution’s nth percentile point is xn and mth percentile 
point is xm then the following has to hold:   

  

This is a system of non-linear equations that can be solved for the unknown distribution 
parameters θ. We used the Nelder and Mead (1965) numeric optimization algorithm, 
available in R, to find the best-fitting estimates of parameters θ for the truncated 
distributions specified by the experts. Once estimates of θ were obtained, the 
distributions were specified fully and we had enough information to make 15,000 
draws from each.   

Table G-2 below summarizes the results for each expert who specified a parametric 
distribution. In each case, we provide an “input” line that has all the information that 
was provided by the expert. We also show the “output” line that contains the inferred 
parameters and five percentile points of the distribution from which draws were made.  

Highlighted in yellow are the percentiles specified by the expert and used to create the 
equation system for the optimization. After finding the best-fitting parameters, we 
calculated the associated percentiles and confirmed that they are close to the input 
values. 

 Table G-2. Description of the Parametric Expert Functions 

Expert Information Distribution Min P5 P25 P50 P75 P95 Max Parameters 

A 
input Normal 0 0.290    2.900 4 mean=? 

sd=? 

output   0.290 0.929 1.481 2.059 2.900  mean=1.42 
sd=0.895 

C 
input Normal 0   1.200  2.000 +8 mean=? sd=? 

output   0.423 0.875 1.200 1.528 2.000  mean = 1.196 
sd=0.488 

D 
input Triangular 0.100      1.600 mode =0.95 

output   0.350 0.662 0.897 1.107 1.382   

( )
( ) 100/maxmin,,;

100/maxmin,,;
mxmF
nxnF

=
=

θ
θ
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Expert Information Distribution Min P5 P25 P50 P75 P95 Max Parameters 

E 
input Normal 0   2.000  3.000 +8 mean=? sd=? 

output   1.002 1.590 2.000 2.410 3.000  mean=2 
sd=0.608 

G 
input Normal -8   1.000  1.300 1.500 mean=? sd=? 

output   0.695 0.875 1.000 1.124 1.300  mean=1.001 
sd=0.185 

I 
input Normal 0.200      2.300 mean=1.25 

sd=0.53 

output   0.473 0.912 1.250 1.588 2.027   

J 

input Weibull 0 0.150  0.900  2.000 3.000 shape=? scale=? 
location=? 

output   0.150 0.525 0.900 1.331 2.000  
shape=2.21 
scale=1.413 

location=-0.326 

K1  
4-16 

µg/m3 

input Normal -8 0.100  0.400   0.800 mean=? sd=? 

output   0.100 0.277 0.400 0.521 0.682  mean=0.404 
sd=0.184 

K2  
>16-30 
µg/m3 

input Normal -8 0.100  0.700   1.500 mean=? sd=? 

output   0.100 0.455 0.700 0.942 1.264  mean=0.707 
sd=0.367 

For example, Expert A indicated that the distribution of the effect is Normal, with 
minimum 0 and maximum 4. Under the assumption that this is actually a truncated 
Normal distribution, we looked for the corresponding mean and standard deviation for 
it. The 5th and the 95th percentile values (0.29 and 2.90, respectively) were used to 
specify the following equations:  

  
  

The solution to this system was a mean of 1.42 and a standard deviation of 0.89. We 
also verified that these parameters produced percentile values consistent with the ones 
supplied by the expert. We similarly solved for the parameters of the other experts who 
specified parametric distributions, with the exception of experts D and I, who specified 
their distributions fully.   

The experts were asked to describe uncertainty distributions for the percent change in 
mortality risk associated with a 1 µg/m3 change in PM2.5. All of the experts assumed log-
linear (or piecewise log-linear) C-R functions. If Z denotes the percent change elicited 
from an expert, the relative risk associated with a 1 µg/m3 change in PM2.5 is (1+Z/100), 
and the PM2.5 coefficient in the log-linear C-R function is ln(1+(Z/100)). We applied this 
transformation to the values drawn from each distribution.   

0.05=4)=max0,=min?,=sd?,=meanN(0.29;
0.95=4)=max0,=min?,=sd?,=meanN(2.90;
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Finally, some experts stated that their distribution does not incorporate the likelihood 
of causality - i.e., they specified conditional distributions. We made 15,000 draws from 
an expert’s conditional distribution. BenMAP contains a function that is zero. If an 
expert specified, for example, a five percent chance that there is not a causal 
association, BenMAP will draw from this zero function with five percent probability and 
draw from the 15,000-draw custom distribution (of positive values) with 95 percent 
probability. Table G-3 below shows summary statistics for the draws from the 
parametric distributions that became BenMAP “custom” distribution tables.  Additional 
details on the form of the distributions are below and in Belova et al. (2007).  

Table G-3. Descriptive Statistics of the Random Draws from the Parametric Expert 
Distributions 

Expert Mean 
Standard 
Deviation Min P25 P50 P75 Max 

A 0.01518 0.00773 0.00000 0.00944 0.01483 0.02051 0.03917 
C 0.01193 0.00466 0.00001 0.00870 0.01189 0.01509 0.02848 
D (cond) 0.00884 0.00305 0.00105 0.00671 0.00899 0.01108 0.01577 
D 0.00838 0.00354 0.00000 0.00623 0.00875 0.01092 0.01577 
E (cond) 0.01975 0.00591 0.00026 0.01577 0.01986 0.02376 0.04534 
E 0.01967 0.00619 0.00000 0.01575 0.01989 0.02381 0.04534 
G (cond) 0.00996 0.00181 0.00256 0.00873 0.00996 0.01123 0.01489 
G 0.00697 0.00480 0.00000 0.00000 0.00892 0.01062 0.01489 
I (cond) 0.01240 0.00458 0.00200 0.00905 0.01244 0.01575 0.02273 
I 0.01181 0.00523 0.00000 0.00845 0.01214 0.01559 0.02273 
J 0.00962 0.00567 0.00000 0.00525 0.00902 0.01329 0.02936 
K1 (cond) 0.00394 0.00175 -0.00262 0.00278 0.00398 0.00520 0.00797 
K1 0.00139 0.00215 -0.00262 0.00000 0.00000 0.00298 0.00796 
K2 (cond) 0.00689 0.00350 -0.00766 0.00452 0.00698 0.00937 1.01489 
K2 0.00237 0.00382 -0.00402 0.00000 0.00000 0.00489 0.01488 

 
G.1.1.1.2  Non-Parametric Distributions   

Experts B, F, H, and L chose a non-parametric distribution function to represent their 
subjective beliefs about the percent change in risk associated with 1 µg/m3 increase in 
PM2.5. They specified the following characteristics of the distribution:   

• The truncation points (i.e., minimum and/or maximum)  

• Five percentile points   

• The likelihood that the association is causal and whether the function includes that 
(i.e., whether the function is conditional on the association being causal or unconditional)   

The only information that we had about these distributions was the minimum, the 
maximum, and the five percentiles. The shape of the distribution was unknown. Therefore, 
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we made an assumption that the cumulative distribution function (CDF) is piece-wise 
linear. In other words, we assumed that all values between the percentiles are equally 
likely. Following this assumption, we used linear interpolation between the percentile 
points to derive the CDF for each expert. We then made 15,000 draws from each CDF.    

Table G-4 shows the inputs and the outputs of this process for each expert. The inputs are the 
minimum, the maximum, and the percentiles. The outputs are the percentiles that we 
calculated from the draws from the respective linearly interpolated CDFs.    

Table G-4. Description of the Non-Parametric Expert Functions  

Expert Information Min P5 P10 P25 P50 P75 P95 Max 

B1 4-10 
µg/m3 

input 0.010 0.100  0.200 1.200 2.100 2.600 2.800 

output  0.099  0.203 1.213 2.092 2.599  

B2 >10-
30 µg/m3 

input 0.100 0.200  0.500 1.200 2.100 2.600 2.800 

output  0.198  0.501 1.191 2.096 2.597  

F1 4-7 
µg/m3 

input 0.370 0.580  0.730 0.930 1.100 1.400 1.700 

output  0.581  0.732 0.928 1.097 1.407  

F2 >7-30 
µg/m3 

input 0.290 0.770  0.960 1.100 1.400 1.600 1.800 

output  0.771  0.958 1.100 1.398 1.606  

H 
input 0 0 0 0.400 0.700 1.300 2.000 3.000 

output  0 0 0.407 0.710 1.320 2.010  

L1 4-10 
µg/m3 

input 0 0.200  0.570 1.000 1.400 1.600 2.700 

output  0.201  0.570 0.996 1.400 1.619  

L2 >10-
30 µg/m3 

input 0.020 0.200  0.570 1.000 1.400 1.600 2.700 

output  0.018  0.568 1.003 1.396 1.634  
 

Table G-5 below shows summary statistics for the draws from the non-parametric 
distributions that became BenMAP “custom” distribution tables. The section below on 
distributional details contains histograms for all the experts’ distributions.   

Table G-5. Descriptive Statistics of the Random Draws from the Non-Parametric 
Expert Distributions 

Expert Mean 
Standard 
Deviation Min P25 P50 P75 Max 

B1 (cond) 0.01217 0.00897 0.00010 0.00200 0.01195 0.02090 0.02761 
B1 0.01195 0.00901 0.00000 0.00195 0.01167 0.02075 0.02761 
B2 (cond) 0.01290 0.00813 0.00100 0.00489 0.01187 0.02068 0.02761 
B2 0.01262 0.00827 0.00000 0.00464 0.01159 0.02042 0.02761 
F1 0.00937 0.00268 0.00370 0.00727 0.00924 0.01092 0.01686 
F2 0.01144 0.00292 0.00290 0.00951 0.01091 0.01387 0.01784 
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Expert Mean 
Standard 
Deviation Min P25 P50 P75 Max 

H 0.00870 0.00662 0.00000 0.00406 0.00702 0.01302 0.02954 
L1 (cond) 0.00985 0.00511 0.00001 0.00582 0.00999 0.01391 0.02662 
L1 0.00739 0.00613 0.00000 0.00001 0.00727 0.01250 0.02659 
L2 (cond) 0.00953 0.00544 0.00000 0.00567 0.00991 0.01389 0.02661 
L2 0.00934 0.00549 0.00000 0.00531 0.00964 0.01371 0.02661 

 
G.1.1.1.3 Using Expert Functions in BenMAP   

When an expert has specified certain functional specifics with certain probabilities, the 
resulting “C-R function” becomes a set of possible functions, each with an associated 
probability. For example, expert K specified a piecewise log-linear function (i.e., two 
different log-linear functions on two different parts of the range of PM2.5); this expert 
also specified a threshold within different ranges with different probabilities (and no 
threshold with a specified probability). BenMAP incorporates such a set of possible 
functions specified by an expert function by assigning appropriate weights to each 
specification. We illustrate this using expert K’s specification.   

Expert K specified one log-linear function if the baseline PM2.5 value falls within the 
range from 4 µg/m3 to 16 µg/m3 and another log-linear function if the baseline value 
falls within the range from >16 µg/m3 to 30 µg/m3. BenMAP thus incorporates two sets 
of functions - one set for each of these two PM2.5 ranges - and selects from the set 
appropriate for a given PM2.5 baseline value.  Expert K also specified a 64% probability 
that there is no causal relationship; an 18% probability that there is a causal 
relationship with no threshold, a 4% probability that there is a causal relationship with 
a threshold somewhere between 5 µg/m3 to 10 µg/m3, and a 14% probability that there 
is a causal relationship with a threshold somewhere between 0 µg/m3 to 5 µg/m3. Thus, 
the set of log-linear functions in BenMAP for expert K on the range from 4 µg/m3 to 16 
µg/m3 contains a function with the:   

• PM2.5 coefficient = 0 (no causality), which BenMAP selects with 65% probability;   

• PM2.5 coefficient expert K specified for the log-linear function on that range and no 
threshold, which BenMAP selects with 18% probability;   

• PM2.5 coefficient expert K specified for the log-linear function on that range and a 
threshold (with uniform probability) between 0 µg/m3 to 5 µg/m3, which BenMAP 
selects with 14% probability; and   

• PM2.5 coefficient expert K specified for the log-linear function on that range and a 
threshold (with uniform probability) between 5 µg/m3 to 10 µg/m3, which BenMAP 
selects with 4% probability.   

If the PM2.5 baseline value is greater than 16 µg/m3, BenMAP goes through an analogous 
procedure to select a function from among the two functions in that set.  
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G.1.1.1.4  Distributional Details by Expert   

Distributional details on each expert distribution are presented below. The derivation 
of the distributions is described above with additional details provided by Belova et al. 
(2007).   
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G.1.1.1.4.1   Expert A   

Figure G-1. Histogram of the Random Draw from the Distribution of the PM2.5 Effect 
Specified by Expert A 

  
Notes:   

Expert A specified a truncated Normal Distribution. We inferred the following values for 
the parameters of this distribution: mean=1.42 and standard deviation=0.89.   

The experts specified distributions for the percent changes in the relative risk. The 
distribution of the corresponding PM2.5 effects was the following transformation of the 
percent change in relative risk Z - log(1+(Z/100)).  
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G.1.1.1.4.2   Expert B   

Figure G-2. Characteristics of the Random Draw from the Approximated Distribution of 
the PM2.5 Effect Specified by Expert B  
(1) Results for the range 4-10 µg/m3  

 
Notes:   

Expert B specified a non-parametric distribution using five percentile points. We 
linearly interpolated the CDF between them. Panel (a) shows q-q plot of the expert 
percentiles and empirical percentiles for the draw. Panel (b) shows empirical CDF 
associated with the draw, the red “X” marks indicate corresponding expert percentiles. 
The distribution was conditional on causality. We created a corresponding 
unconditional distribution by adding extra 2 percent zeros to the draw. Panels (c) and 
(d) show the respective distributions.  
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The experts specified distributions for the percent changes in the relative risk. The 
distribution of the corresponding PM2.5 effects was the following transformation of the 
percent change in relative risk Z - log(1+(Z/100)).  

 
Figure G-2. Characteristics of the Random Draw from the Approximated Distribution of  

the PM2.5 Effect Specified by Expert B (continued)   
(2) Results for the range >10-30 µg/m3  

 
Notes:   

Expert B specified a non-parametric distribution using five percentile points. We 
linearly interpolated the CDF between them. Panel (a) shows q-q plot of the expert 
percentiles and empirical percentiles for the draw. Panel (b) shows empirical CDF 
associated with the draw, the red “X” marks indicate corresponding expert percentiles. 
The distribution was conditional on causality. We created a corresponding 
unconditional distribution by adding extra 2 percent zeros to the draw. Panels (c) and 
(d) show the respective distributions.   
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The experts specified distributions for the percent changes in the relative risk. The 
distribution of the corresponding PM2.5 effects was the following transformation of the 
percent change in relative risk Z - log(1+(Z/100)).  

G.1.1.1.4.3   Expert C  

Figure G-3. Histogram of the Random Draw from the Distribution of the PM2.5 Effect 
Specified by Expert C  

 
Notes:   

Expert C specified a truncated Normal Distribution. We inferred the following values for 
the parameters of this distribution: mean=1.20 and standard deviation=0.49.   

The experts specified distributions for the percent changes in the relative risk. The 
distribution of the corresponding PM2.5 effects was the following transformation of the 
percent change in relative risk Z - log(1+(Z/100)).  
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G.1.1.1.4.4   Expert D  

Figure G-4. Histogram of the Random Draw from the Distribution of the PM2.5 Effect 
Specified by Expert D  

  
Notes:   

Expert D specified a Triangular Distribution with minimum=0.1, maximum=1.6, and 
mode=0.95. The distribution was conditional on causality. We created a corresponding 
unconditional distribution by adding extra 5 percent zeros to the draw.   

The experts specified distributions for the percent changes in the relative risk. The 
distribution of the corresponding PM2.5 effects was the following transformation of the 
percent change in relative risk Z - log(1+(Z/100)).  
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G.1.1.1.4.5   Expert E  

Figure G-5. Histogram of the Random Draw from the Distribution of the PM2.5 Effect 
Specified by Expert E 

 

  
 

Notes:   

Expert E specified a truncated Normal Distribution. We inferred the following 
parameters for this distribution: mean=2.00 and standard deviation=0.61. The 
distribution was conditional on causality. We created a corresponding unconditional 
distribution by adding extra 1 percent zeros to the draw.   

The experts specified distributions for the percent changes in the relative risk. The 
distribution of the corresponding PM2.5 effects was the following transformation of the 
percent change in relative risk Z - log(1+(Z/100)).  
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G.1.1.1.4.6   Expert F  

Figure G-6. Characteristics of the Random Draw from the Approximated Distribution of 
the PM2.5 Effect Specified by Expert F  

(1) Results for the range 4-7 µg/m3  

   
Notes:   

Expert F specified a non-parametric distribution using five percentile points. We 
linearly interpolated the CDF between them. Panel (a) shows q-q plot of the expert 
percentiles and empirical percentiles for the draw. Panel (b) shows empirical CDF 
associated with the draw, the red “X” marks indicate corresponding expert percentiles. 
Panel (c) shows the histogram of the distribution.   

The experts specified distributions for the percent changes in the relative risk. The 
distribution of the corresponding PM2.5 effects was the following transformation of the 
percent change in relative risk Z - log(1+(Z/100)).  
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Figure G-6. Characteristics of the Random Draw from the Approximated Distribution of 
the PM2.5 Effect Specified by Expert F (continued)  

(2) Results for the range >7-30 µg/m3  

  
Notes:   

Expert F specified a non-parametric distribution using five percentile points. We 
linearly interpolated the CDF between them. Panel (a) shows q-q plot of the expert 
percentiles and empirical percentiles for the draw. Panel (b) shows empirical CDF 
associated with the draw, the red “X” marks indicate corresponding expert percentiles. 
Panel (c) shows the histogram of the distribution.   

The experts specified distributions for the percent changes in the relative risk. The 
distribution of the corresponding PM2.5 effects was the following transformation of the 
percent change in relative risk Z - log(1+(Z/100)).  
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G.1.1.1.4.7   Expert G  

Figure G-7. Histogram of the Random Draw from the Distribution of the PM2.5  
Effect Specified by Expert G 

  

  
Notes:   

Expert G specified a truncated Normal Distribution. We inferred the following 
parameters for this distribution: mean=1.00 and standard deviation=0.19. The 
distribution was conditional on causality. We created a corresponding unconditional 
distribution by adding extra 30 percent zeros to the draw.   

The experts specified distributions for the percent changes in the relative risk. The 
distribution of the corresponding PM2.5 effects was the following transformation of the 
percent change in relative risk Z - log(1+(Z/100)).  
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G.1.1.1.4.8   Expert H  

Figure G-8. Characteristics of the Random Draw from the Approximated Distribution of 
the PM2.5 Effect Specified by Expert H  

  
Notes:   

Expert H specified a non-parametric distribution using six percentile points. We linearly 
interpolated the CDF between them. Panel (a) shows q-q plot of the expert percentiles 
and empirical percentiles for the draw. Panel (b) shows empirical CDF associated with 
the draw, the red “X” marks indicate corresponding expert percentiles. Panel (c) shows 
the histogram of the distribution.   

The experts specified distributions for the percent changes in the relative risk. The 
distribution of the corresponding PM2.5 effects was the following transformation of the 
percent change in relative risk Z - log(1+(Z/100)).  
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G.1.1.1.4.9   Expert I  

Figure G-9. Histogram of the Random Draw from the Distribution of the PM2.5 Effect 
Specified by Expert I  

 
Notes:   

Expert I specified a truncated Normal Distribution with mean=1.25 and standard 
deviation=0.53. The distribution was conditional on causality. We created a 
corresponding unconditional distribution by adding extra 5 percent zeros to the draw.   

The experts specified distributions for the percent changes in the relative risk. The 
distribution of the corresponding PM2.5 effects was the following transformation of the 
percent change in relative risk Z - log(1+(Z/100)).  
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G.1.1.1.4.10   Expert J  

Figure G-10. Histogram of the Random Draw from the Distribution of the PM2.5 Effect 
Specified by Expert J  

  
Notes:   

Expert J specified a truncated Weibull Distribution. We inferred the following values for 
the parameters of this distribution: shape=2.21, scale=1.41, and location=-0.33.   

The experts specified distributions for the percent changes in the relative risk. The 
distribution of the corresponding PM2.5 effects was the following transformation of the 
percent change in relative risk Z - log(1+(Z/100)).    
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G.1.1.1.4.11   Expert K   

Figure G-11. Histogram of the Random Draw from the Distribution of the PM2.5 Effect 
Specified by Expert K 

 

  
Notes:   

Expert K specified a truncated Normal Distribution for two ranges separately (4-16 
µg/m3 and >16-30 µg/m3). We inferred the following parameters for this distribution: 
mean=0.40 and standard deviation=0.18 in the lower range and mean=0.71 and 
standard deviation=0.37 in the upper range. The distribution was conditional on 
causality. We created a corresponding unconditional distribution by adding extra 65 
percent zeros to the draws in each range.   

The experts specified distributions for the percent changes in the relative risk. The 
distribution of the corresponding PM2.5 effects was the following transformation of the 
percent change in relative risk Z - log(1+(Z/100)).  
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G.1.1.1.4.12   Expert L   

Figure G-12. Characteristics of the Random Draw from the Approximated Distribution of 
the PM2.5 Effect Specified by Expert L  
(1) Results for the range 4-10 µg/m3   

  
Notes:   

Expert L specified a non-parametric distribution using five percentile points. We 
linearly interpolated the CDF between them. Panel (a) shows q-q plot of the expert 
percentiles and empirical percentiles for the draw. Panel (b) shows empirical CDF 
associated with the draw, the red “X” marks indicate corresponding expert percentiles. 
The distribution was conditional on causality. We created a corresponding 
unconditional distribution by adding extra 25 percent zeros to the draw. Panels (c) and 
(d) show the respective distributions.   

The experts specified distributions for the percent changes in the relative risk. The 
distribution of the corresponding PM2.5 effects was the following transformation of the 
percent change in relative risk Z - log(1+(Z/100)).  
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Figure G-12. Characteristics of the Random Draw from the Approximated Distribution of 
the PM2.5 Effect Specified by Expert L (continued)  

(2) Results for the range >10-30 µg/m3  

  
Notes:   

Expert L specified a non-parametric distribution using five percentile points. We 
linearly interpolated the CDF between them. Panel (a) shows q-q plot of the expert 
percentiles and empirical percentiles for the draw. Panel (b) shows empirical CDF 
associated with the draw, the red “X” marks indicate corresponding expert percentiles. 
The distribution was conditional on causality. We created a corresponding 
unconditional distribution by adding extra 1 percent zeros to the draw. Panels (c) and 
(d) show the respective distributions.   

The experts specified distributions for the percent changes in the relative risk. The 
distribution of the corresponding PM2.5 effects was the following transformation of the 
percent change in relative risk Z - log(1+(Z/100)).  
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G.1.1.2   Baxter et al. (2017)   

Baxter et al. (2017) used a cluster-based approach to evaluate the impact of residential 
infiltration factors on intercity heterogeneity in short-term PM2.5-mortality 
associations. The authors performed a city-level time series assessment using mortality 
data from the National Center for Health Statistics (NCHS). They included 77 U.S. cities 
in their analysis of 24-hour non-accidental mortality across all ages. PM2.5 exposure 
estimates were based on average daily monitored PM2.5 concentrations in each city and 
the 2-day moving average (lag 0-1 days) of PM2.5 concentration was included in the 
model. The authors utilized Poisson regression models at the city-level and then a meta-
regression model to aggregate the city-specific effect estimates into an overall effect 
estimate. Specifically, in the first stage, the authors ran single-city Poisson time-series 
models adjusting for temperature and dew point temperature and including variables 
for previous day temperature, temporal trends, and trends by age. The second stage 
was a meta-regression with cluster analysis (5 clusters) based on characteristics of 
residential infiltration. 

Short-term Mortality, Non-Accidental 

In a single-pollutant model, the coefficient and standard error are estimated from the 
percent increase in 24-hour non-accidental mortality (0.33%) and 95% confidence 
intervals (95% CI: 0.13-0.53%) for a 10 µg/m3 increase in daily 24-hour mean PM2.5 for 
a 2-day moving average (lag 0-1 days) (Baxter, et al., 2017, in results section text).  

G.1.1.3   Global Exposure Mortality Model (Burnett et al., 2018) 

The Global Exposure Mortality Model (GEMM) is a family of functions that can be used 
to estimate the global burden of disease attributable to ambient fine particle (PM2.5) 
exposure over the entire global exposure range. The GEMM is the latest iteration of 
earlier models with the same purpose, such as the Integrated Exposure Response (IER) 
models (Burnett et al., 2014). The GEMM improves upon these models by excluding 
studies of non-ambient particle exposure, identifying a single counterfactual 
concentration (2.4µg/m3), and quantifying all non-accidental mortality related to 
ambient PM2.5 concentrations relative to that level. The GEMM was constructed by 
combining data from 41 cohort studies in 16 countries that examined the relationship 
between ambient PM2.5 concentrations and mortality. These studies spanned a PM2.5 
range of 2.4µg/m3 to 83.7µg/m3, which encompasses the 2015 population weighted 
outdoor exposure levels for 97% of the global population.  

The GEMM consists of 83 non-linear relative risk functions that relate changes in 
ambient PM2.5 concentrations to changes in six different mortality endpoints: non-
communicable diseases plus lower respiratory infections (NCD+LRI), cerebrovascular 
disease (CEV), chronic obstructive pulmonary disease (COPD), ischemic heart disease 
(IHD), lung cancer (LC), and lower respiratory infections (LRI). The functions are 
applicable to adults age 25-99, and age-specific functions are also provided for 
NCD+LRI, CEV, and IHD because cardiovascular risk factors, including PM2.5, are known 
to decline with age. The authors also prepared one set of functions that exclude the 
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Chinese male cohort study because it had the largest PM2.5 range (15.4 µg/m3 to 
83.7µg/m3). The two sets of functions do not differ significantly for NCD+LRI, COPD, 
and LC; however, excluding the Chinese male cohort yielded lower hazard ratio 
predictions for CEV and IHD (Figure G-13). 

Figure G-13. Figure S6 from Burnett et al., 2018 depicting GEMM hazard ratio 
predictions for NCD+LRI, IHD, CEV (stroke), COPD), and LC with (blue line) and 

without Chinese Male Cohort (red line). 

 

Within BenMAP-CE, each GEMM relative risk function is applied to an air quality 
scenario by first using the applicable GEMM equation to estimate the log-linear beta 
coefficient for the PM2.5 change in each grid cell, and then inserting that beta value into 
the standard BenMAP-CE formula (1-(1/EXP(Beta*DELTAQ)))*Incidence*POP. 
Additional function logic prevents the GEMM from predicting health benefits below the 
counterfactual concentration of 2.4 µg/m3. As a result of this linear approximation 
approach, the calculated BenMAP point estimate(s) are not a perfect reflection of the 
non-linear GEMM functions. However, this approach greatly reduces the 
implementation complexity of these functions while maintaining a reasonable level of 
accuracy, typically within 10% of the non-linear function.  
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G.1.1.4   Ito et al. (2013)   

Ito et al. (2013) used factor analysis to characterize pollution sources and assess the 
association between short-term PM2.5 and PM2.5 components with morbidity and 
mortality outcomes. The authors performed a city-level time series analysis using 
mortality data from the National Center for Health Statistics (NCHS). They included 150 
U.S. cities (and 64 cities in a second analysis) in their assessment of 24-hour all-cause 
mortality for all ages. PM2.5 exposure estimates were based on average daily monitored 
PM2.5 mass data in each city. PM2.5 concentrations were expressed in the model as a 
deviation from the monthly mean to reduce the influence of the seasonal cycles of the 
pollutants on the overall associations and help focus on the short-term associations. 
The authors first ran city- and season-specific Poisson generalized linear models and 
then combined the city-specific estimates using a random effects approach. The model 
adjusted for temporal trends (annual cycles and influenza epidemics), immediate and 
delayed temperature, and day-of-week pattern, for entire years (2001-2006) and for 
warm (April-September) and cold (October-March) seasons. The authors also assessed 
effect modification using land-use variables and average air pollution levels. 

Short-term Mortality, All Cause 

Ito et al. (2013) provided regression coefficients and standard errors which are directly 
used in BenMAP-CE. The selected effect estimate is the lag-1 day (all year) beta of 
0.000145 (0.0000747) (Ito, et al., 2013, Appendix G, Table G.6 for Figure 4). 

G.1.1.5   Jerrett et al. (2017)   

Jerrett et al. (2017) compared mortality effect estimates for PM2.5 modeled from remote 
sensing to those for PM2.5 modeled using ground-level information. Multiple exposure 
estimation approaches were evaluated and the risk assessment used results based on 
an ensemble approach that incorporated chemical transport modeling, land use data, 
satellite data, and data from ground-based monitors. This cohort study evaluated long-
term PM2.5 exposure and mortality from IHD and diseases of the circulatory system in 
the ACS Cancer Prevention Study II cohort (ages 30+). The authors utilized a Cox 
proportional hazards model controlling for individual-level confounders which 
included current and former smoking status as well as smoking duration, amount, age 
started, second hand cigarette smoke (hours/day exposed), exposure to PM2.5 in the 
workplace for each of the subject’s major lifetime occupation, self-reported exposure to 
dust/fumes at work, marital status, level of education, BMI, alcohol consumption, 
dietary vegetable/fruit/fiber index, dietary fat index, and missing nutrition information. 
Ecologic characteristics included median household income, percentage of people with 
<125% of poverty-level income, percentage of persons >16 who are unemployed, 
percentage of adults with <12th grade education, and percentage of population who 
were Black or Hispanic. 
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Mortality, Ischemic Heart Disease (ICD-10 code I20-I25)   

In a single-pollutant model, the coefficient and standard error are estimated from the 
hazard ratio (1.15) and 95% confidence intervals (95% CI: 1.11-1.19) for a 10 µg/m3 
increase in the ensemble estimate of PM2.5 exposure level from 2002-2004 (Jerrett, et 
al., 2017, Table 4 IHD). The model was fully adjusted for ecological confounders. 

G.1.1.6   Krewski et al. (2009)   

This cohort study consists of approximately 360,000 participants residing in areas of 
the country that have adequate monitoring information on levels of PM2.5 for 1980 and 
about 500,000 participants in areas with adequate information for 2000. The causes of 
death that were analyzed included all causes, cardiopulmonary disease (CPD), ischemic 
heart disease (IHD), lung cancer, and all remaining causes. Data for 44 personal, 
individual-level covariates, based on participants’ answers to a 1982 enrollment 
questionnaire, were also used for the analyses. The authors also collected data for seven 
ecologic (neighborhood-level) covariates, each of which represents local factors known 
or suspected to influence mortality, such as poverty level, level of education, and 
unemployment (at both Zip Code and city levels). Long-term average exposure 
variables were constructed for PM2.5 from monitoring data for two periods: 1979-1983 
and 1999-2000.  Similar variables were constructed for long-term exposure to other 
pollutants of interest from single-year (1980) averages, including total suspended 
particles, ozone, nitrogen dioxide, and sulfur dioxide. Exposure was averaged for all 
monitors within a metropolitan statistical area (MSA) and assigned to participants 
according to their Zip Code area (ZCA) of residence. The authors chose the standard Cox 
proportional-hazards model (and a variation to allow for random effects) to calculate 
hazard ratios for various cause-of-death categories associated with the levels of air 
pollution exposure in the cohort. They extended the random effects Cox model to 
accommodate two levels of information for clustering and for ecologic covariates. Three 
main analyses were conducted: a Nationwide Analysis, Intra-Urban Analyses in the New 
York City (NYC) and Los Angeles (LA) regions, and an analysis designed to investigate 
whether critical time windows of exposure to pollutants might have affected mortality 
in the cohort.  

Mortality, All-Cause   

In a random effects Cox model, the coefficient and standard error in BenMAP-CE are 
estimated from the relative risks (1.06) and 95% confidence intervals (95% CI: 1.04-
1.08) for a 10 µg/m3 increase in the average of PM2.5 exposure level for 1999-2000 
(Krewski, et al., 2009, Commentary Table 4). The results were adjusted for the 44 
individual-level covariates and the 7 ecologic covariates at the MSA & DIFF levels.   

Mortality, Ischemic Heart Disease (ICD-10 code I20-I25)   

In a random effects Cox model, the coefficient and standard error are estimated from 
the relative risks (1.24) and 95% confidence intervals (95% CI: 1.19-1.29) for a 10 
µg/m3 increase in the average of PM2.5 exposure level for 1999-2000 (Krewski, et al., 
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2009, Commentary Table 4). The results were adjusted for the 44 individual-level 
covariates and the 7 ecologic covariates at the MSA & DIFF levels.  

Mortality, Lung Cancer (ICD-10 code C30-C39)   

In a random effects Cox model, the coefficient and standard error are estimated from 
the relative risks (1.14) and 95% confidence intervals (95% CI: 1.06-1.23) for a 10 
µg/m3 increase in the average of PM2.5 exposure level for 1999-2000 (Krewski, et al., 
2009, Commentary Table 4). The results were adjusted for the 44 individual-level 
covariates and the 7 ecologic covariates at the MSA & DIFF levels.   

G.1.1.7   Laden et al. (2006)  

A large body of epidemiologic literature has found an association of increased fine 
particulate air pollution (PM2.5) with acute and chronic mortality. The effect of 
improvements in particle exposure is less clear. Earlier analysis of the Harvard Six 
Cities adult cohort study showed an association between long-term ambient PM2.5 and 
mortality between enrollment in the mid-1970’s and follow-up until 1990. The authors 
extended mortality follow-up for eight years in a period of reduced air pollution 
concentrations. Annual city-specific PM2.5 concentrations were measured between 
1979-1988, and estimated for later years from publicly available data. E xposure was 
defined as (1) city-specific mean PM2.5 during the two follow-up periods, (2) mean PM2.5 
in the first period and change between these periods, (3) overall mean PM2.5 across the 
entire follow-up, and (4) year-specific mean PM2.5. Mortality rate ratios were estimated 
with Cox proportional hazards regression controlling for individual risk factors. The 
authors found an increase in overall mortality associated with each 10 µg/m3 increase 
in PM2.5 modeled either as the overall mean (RR=1.16, 95%CI=1.07-1.26) or as 
exposure in the year of death (RR=1.14, 95%CI=1.06-1.22). PM2.5 exposure was 
associated with lung cancer (RR=1.27, 95%CI=0.96-1.69) and cardiovascular deaths 
(RR=1.28, 95%CI=1.13-1.44). Improved overall mortality was associated with 
decreased mean PM2.5 (10 microg/m(3)) between periods (RR=0.73, 95% CI=0.57-
0.95). Total, cardiovascular, and lung cancer mortality were each positively associated 
with ambient PM2.5 concentrations. Reduced PM2.5 concentrations were associated with 
reduced mortality risk.   

All-Cause Mortality  

The coefficient and standard error for PM2.5 are estimated from the  relative risk (1.16) 
and 95% confidence interval of (1.07-1.26) associated with a change in annual mean 
exposure of 10.0 µg/m3 (Laden et al., 2006, p. 667).    

G.1.1.8   Lepeule et al. (2012) 

Lepeule et al. (2012) evaluated the sensitivity of previous Six Cities results to model 
specifications, lower exposures, and averaging time using eleven additional years of 
cohort follow-up that incorporated recent lower exposures. The authors found 
significant associations between PM2.5 exposure and increased risk of all-cause, 
cardiovascular and lung cancer mortality. The authors also concluded that the 
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concentration-response relationship was linear down to PM2.5 concentrations of 8 
μg/m3, and that mortality rate ratios for PM2.5 fluctuated over time, but without clear 
trends, despite a substantial drop in the sulfate fraction. 

G.1.1.9   Pope et al. (2002)  

The Pope et al. (2002) analysis is a longitudinal cohort tracking study that uses the 
same American Cancer Society cohort as the original Pope et al. (1995) study, and the 
Krewski et al. (2000) reanalysis. Pope et al. (2002) analyzed survival data for the cohort 
from 1982 through 1998, 9 years longer than the original Pope study. Pope et al. (2002) 
also obtained PM2.5 data in 116 metropolitan areas collected in 1999, and the first three 
quarters of 2000. This is more metropolitan areas with PM2.5 data than was available in 
the Krewski reanalysis (61 areas), or the original Pope study (50 areas), providing a 
larger size cohort.   

They used a Cox proportional hazard model to estimate the impact of long-term PM 
exposure using three alternative measures of PM2.5 exposure; metropolitan area-wide 
annual mean PM levels from the beginning of tracking period (1979-1983 PM data, 
conducted for 61 metropolitan areas with 359,000 individuals), annual mean PM from 
the end of the tracking period (1999-2000, for 116 areas with 500,000 individuals), and 
the average annual mean PM levels of the two periods (for 51 metropolitan areas, with 
319,000 individuals). PM levels were lower in 1999-2000 than in 1979-1983 in most 
cities, with the largest improvements occurring in cities with the highest original levels.   

Pope et al. (2002) followed Krewski et al. (2000) and Pope et al. (1995, Table 2) and 
reported results for all-cause deaths, lung cancer (ICD-9 code: 162), cardiopulmonary 
deaths (ICD-9 codes: 401-440 and 460-519), and “all other” deaths. All-cause mortality 
includes accidents, suicides, homicides and legal interventions. The category “all other” 
deaths is all-cause mortality less lung cancer and cardiopulmonary deaths. Like the 
earlier studies, Pope et al. (2002) found that mean PM2.5 is significantly related to all-
cause and cardiopulmonary mortality. In addition, Pope et al. (2002) found a significant 
relationship with lung cancer mortality, which was not found in the earlier studies. 
None of the three studies found a significant relationship with “all other” deaths.   

Pope et al. (2002) obtained ambient data on gaseous pollutants routinely monitored by 
EPA during the 1982-1998 observation period, including SO2, NO2, CO, and ozone. They 
did not find significant relationships between NO2, CO, and ozone and premature 
mortality, but there were significant relationships between SO4 (as well as SO2), and all-
cause, cardiopulmonary, lung cancer and “all other” mortality.   

All-Cause Mortality, 1979-1983 Exposure   

The coefficient and standard error for PM2.5 using the 1979-1983 PM data are estimated 
from the relative risk (1.04) and 95% confidence interval (1.01-1.08) associated with a 
change in annual mean exposure of 10.0 µg/m3 (Pope et al., 2002, Table 2).   



 Appendix G:  Additional Health Impact Functions in U.S. Setup 

BenMAP-CE User’s Manual Appendices March 2023 
G-32 

All-Cause Mortality, Average of 1979-1983 and 1999-2000 Exposure   

The coefficient and standard error for PM2.5 using the average of 1979-1983 and 1999-
2000 PM data are estimated from the relative risk (1.06) and 95% confidence interval 
(1.02-1.11) associated with a change in annual mean exposure of 10.0 µg/m3 (Pope et 
al., 2002, Table 2).   

G.1.1.10   Pope et al. (2015)  

This cohort study evaluated the relationship between long-term exposure to ambient 
PM2.5 and risk of death from CVD and cardiometabolic disease, including effect 
modification of the relationship by pre-existing cardiometabolic risk factors, in the ACS 
Cancer Prevention Study II cohort (ages 30 and above). PM2.5 exposures were estimated 
at home addresses based on a land use regression and Bayesian maximum entropy 
(LUR-BME) interpolation model that incorporated data from ground-based monitors. 
Pope et al. utilized a Cox proportional hazards model controlling for individual-level 
covariates which included variables that characterized current and former smoking 
habits, exposure to second -hand cigarette smoke, workplace PM2.5 exposure in each 
subject’s main lifetime occupation, self -reported exposure to dust and fumes in the 
workplace, marital status, level of education, body mass index, consumption of alcohol, 
and quartile ranges of dietary fat index and quartile ranges of a dietary 
vegetable/fruit/fiber index. Ecological covariates included median household income; 
percentage of people with <125% of poverty level income; percentage of unemployed 
individuals aged ≥16 years; percentage of adults with <12th grade education; and 
percentage of the population who were Black or Hispanic. 

Mortality, Ischemic Heart Disease (ICD-10 code I20-I25)   

In a single-pollutant model, the coefficient and standard error are estimated from the 
hazard ratio (1.14) and 95% confidence intervals (95% CI: 1.10-1.18) for a 10 µg/m3 
increase in monthly PM2.5 exposure levels averaged from 1999-2004 (Pope, et al., 2015, 
Table 1. Cox model with individual-level plus ecological covariates; exposure based on 
LUR-BME).  

G.1.1.11   Thurston et al. (2016)  

Thurston et al. (2016) reevaluated the relationship between long-term exposure to 
ambient PM2.5 and mortality given the recent decline in U.S. ambient PM concentrations 
and differentiated risk for fossil fuel PM2.5 versus total PM2.5. This cohort study analyzed 
all-cause, CVD, and respiratory mortality in the NIH-AARP cohort (ages 55-85) in 100 
metropolitan areas in CA, GA, FL, LA, MI, NC, NJ, and PA. PM2.5 exposures were 
estimated at census tract centroids based on land use data and U.S. EPA AQS ground-
based monitors. Participant exposure was estimated at census-tract of residence and 
included annual mean concentration in the year of mortality and 1- year lag average in 
a time-dependent model. Thurston et al. utilized a Cox proportional hazards model 
adjusted for race, education, marital status, BMI, alcohol consumption, smoking history, 
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and contextual variables such as median household income and percentage of 
population with less than a high school education. 

Mortality, All-Cause 

In a single-pollutant model, the coefficient and standard error are estimated from the 
hazard ratio (1.03) and 95% confidence intervals (95% CI: 1.00-1.05) for a 10 µg/m3 
increase in the annual mean PM2.5 exposure level (Thurston, et al., 2016, Table 2. NIH-
AARP cohort time independent Cox model PM2.5 mortality hazard ratios (and 95th 
percentile CI) per 10 μg/m3, by cause and cohort subgroup; cohort: ALL).  

G.1.1.12   Turner et al. (2016)  

See full study description under Turner et al. (2016) in Appendix E, Section E.1.2. 

Mortality, Lung Cancer 

In a single-pollutant model, the coefficient and standard error are estimated from the 
hazard ratio (1.09) and 95% confidence intervals (95% CI: 1.03-1.16) for a 10 µg/m3 
increase in the mean PM2.5 exposure level from 1999-2004 (Turner, et al., 2016, Table 
E4: Lung cancer, fully-adjusted HR, LURBME PM2.5).  

G.1.1.13   Woodruff et al. (1997)  

In a study of four million infants in 86 U.S. metropolitan areas conducted from 1989 to 
1991, Woodruff et al. (1997) found a significant link between PM10 exposure in the first 
two months of an infant’s life with the probability of dying between the ages of 28 days 
and 364 days. PM10 exposure was significant for all-cause mortality. PM10 was also 
significant for respiratory mortality in average birth-weight infants, but not low birth-
weight infants.   

Post-Neonatal Mortality   

The coefficient and standard error are based on the odds ratio (1.04) and the 95% 
confidence interval (1.02-1.07) associated with a 10 µg/m3 change in PM10 (Woodruff et 
al., 1997, Table 3).  

G.1.1.14   Woodruff et al. (2006)   

Studies suggest that airborne particulate matter (PM) may be associated with 
postneonatal infant mortality, particularly with respiratory causes and sudden infant 
death syndrome (SIDS). To further explore this issue, the authors examined the 
relationship between long-term exposure to fine PM air pollution and postneonatal 
infant mortality in California. They linked monitoring data for PM2.5 to infants born in 
California in 1999 and 2000 using maternal addresses for mothers who lived within 5 
miles of a PM2.5 monitor. They matched each postneonatal infant death to four infants 
surviving to 1 year of age, by birth weight category and date of birth (within 2 weeks). 
For each matched set, they calculated exposure as the average PM2.5 concentration over 
the period of life for the infant who died. They used conditional logistic regression to 
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estimate the odds of postneonatal all-cause, respiratory-related, SIDS, and external-
cause (a control category) mortality by exposure to PM2.5, controlling for the matched 
sets and maternal demographic factors. They matched 788 postneonatal infant deaths 
to 3,089 infant survivors, with 51 and 120 postneonatal deaths due to respiratory 
causes and SIDS, respectively. They found an adjusted odds ratio for a 10-microg/m3 
increase in PM2.5 of 1.07 [95% confidence interval (CI), 0.93-1.24] for overall 
postneonatal mortality, 2.13 (95% CI, 1.12-4.05) for respiratory-related postneonatal 
mortality, 0.82 (95% CI, 0.55-1.23) for SIDS, and 0.83 (95% CI, 0.50-1.39) for external 
causes.   

Post-Neonatal Mortality   

The coefficient and standard error for PM2.5 are estimated from the relative risk (1.07) 
and the 95% confidence interval (0.93-1.24) associated with a change in annual mean 
exposure of 10.0 µg/m3 (Woodruff et al., 2006, p. 786). 

G.1.1.15   Zanobetti et al. (2014)  

Zanobetti et al. (2014) estimated the effect of short-term exposure to PM2.5 on all-cause 
mortality and also assessed the potential for pre-existing diseases (neurological 
disorders and diabetes) to modify the association between PM2.5 and mortality. This 
case-crossover analysis was a community-level assessment (community defined as the 
county or contiguous counties encompassing a city's population) of a Medicare cohort 
(age 65+) in 121 U.S. communities. PM2.5 exposures were estimated based on data from 
U.S. EPA AQS ground-based monitors. Daily PM2.5 data available for various monitors 
were averaged over the communities and participants were assigned a 2-day moving 
average (lag 0 and 1) based on community of residence. Zanobetti et al. (2014) first 
performed logistic regression at the community level, controlling for confounders such 
as the average temperature for the same and previous day. In a second stage of analysis, 
the community specific results were combined using multivariate meta-analysis 
techniques. 

Short-term Mortality, All-Cause 

In a single-pollutant model, the coefficient and standard error are estimated from the 
percent increase (0.64%) and 95% confidence intervals (95% CI: 0.42-0.85%) for a 10 
µg/m3 increase in the 2-day average PM2.5 concentration (Zanobetti, et al., 2014, Table 
2. Percent increase for 10 μg/m3 increase in the two days average PM2.5: Combined 
across the 121 communities).  

G.1.2 Chronic/Severe Illness  
Table G-6 below summarizes the additional health impacts functions used to estimate 
the relationship between PM2.5 and chronic / severe health effects. We present a brief 
summary of each of the studies and any items that are unique to the study.    
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Table G-6. Additional Health Impact Functions for Particulate Matter and Chronic 
Illness 

Effect Author Year Location Age Co-Poll Metric Beta Std Err Form Notes 

Chronic 
Bronchitis 

Abbey et al. 1995 SF, SD, South 
Coast Air Basin 

27-99  Annual 0.013185 0.006796 Logistic  

Acute 
Myocardial 
Infarction, 
Nonfatal 

Peters et al. 2001 Boston, MA 18-99  D24HourMean 0.024121 0.009285 Logistic  

Acute 
Myocardial 
Infarction, 
Nonfatal 

Pope et al.  2006 Greater Salt 
Lake City, UT 

0-99  D24HourMean 0.0048 0.0019 Logistic Index MI 
and 
unstable 
angina 

Acute 
Myocardial 
Infarction, 
Nonfatal 

Sullivan et al. 2005 King County, 
WA 

0-99  D24HourMean 0.0019 0.0022 Logistic  

Acute 
Myocardial 
Infarction, 
Nonfatal 

Zanobetti and 
Schwartz 

2006 Greater Boston, 
MA 

0-99  D24HourMean 0.0053 0.0022 Logistic Age range 
adjusted 
Admissions 
through ER 
visits only. 

Acute 
Myocardial 
Infarction, 
Nonfatal 

Zanobetti et 
al. 

2009 26 U.S. Comm 0-99  D24HourMean 0.0022 0.0006 Log-linear Age range 
adjusted. All 
Seasons. 

 

G.1.2.1   Abbey et al. (1995b)   

Abbey et al. (1995b) examined the relationship between estimated PM2.5 (annual mean 
from 1966 to 1977), PM10 (annual mean from 1973 to 1977) and TSP (annual mean 
from 1973 to 1977) and the same chronic respiratory symptoms in a sample population 
of 1,868 Californian Seventh Day Adventists. The initial survey was conducted in 1977 
and the final survey in 1987. To ensure a better estimate of exposure, the study 
participants had to have been living in the same area for an extended period of time. In 
single-pollutant models, there was a statistically significant PM2.5 relationship with 
development of chronic bronchitis, but not for AOD or asthma; PM10 was significantly 
associated with chronic bronchitis and AOD; and TSP was significantly associated with 
all cases of all three chronic symptoms. Other pollutants were not examined.   

Chronic Bronchitis   

The estimated coefficient (0.0137) is presented for a one µg/m3 change in PM2.5 (Abbey 
et al., 1995b, Table 2). The standard error is calculated from the reported relative risk 
(1.81) and 95% confidence interval (0.98-3.25) for a 45 µg/m3 change in PM2.5.   

Incidence Rate: annual bronchitis incidence rate per person (Abbey et al., 1993, Table 
3) = 0.00378   
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Population: population of ages 27 and older without chronic bronchitis = 95.57% of 
population 27+. Using the same data set, Abbey et al. (1995a, p. 140) reported that the 
respondents in 1977 ranged in age from 27 to 95. The American Lung Association 
(2010a, Table 4) reports a chronic bronchitis prevalence rate for ages 18 and over of 
4.37%. 

G.1.2.2   Peters et al. (2001)   

See full study description under Peters et al. (2001) in Appendix E, Section E.2.5. 

G.1.2.3   Pope et al. (2006)   

See full study description under Pope et al. (2006) in Appendix E, Section E.2.6. 

G.1.2.4   Sullivan et al. (2005)   

See full study description under Sullivan et al. (2005) in Appendix E, Section E.2.9. 

G.1.2.5   Zanobetti and Schwartz (2006)   

See full study description under Zanobetti and Schwartz (2006) in Appendix E, Section 
E.2.10. 

G.1.2.6   Zanobetti et al. (2009)   

See full study description under Zanobetti et al. (2009) in Appendix E, Section E.2.11. 

G.1.3 Hospitalizations   
Table G-7 summarizes the additional health impacts functions used to estimate the 
relationship between PM2.5 and hospital admissions. Below, we present a brief 
summary of each of the studies and any items that are unique to the study.  

Table G-7. Additional Health Impact Functions for Particulate Matter and Hospital 
Admissions 

Effect Author Year Location Age Co-Poll Metric Beta Std Err Form Notes 

Asthma Babin et al. 2007 Washington, DC 0-17  D24HourMean 0.0020 0.0043 Log-linear Age range 
adjusted 
Admission 
from 
emergency 
department 
only. 

All 
Cardiovascular 
(less Myocardial 
Infarctions) 

Bell et al.  2008 202 U.S. 
Counties 

65-99  D24HourMean 0.0008 0.0001 Log-linear Urgent 
admission 
only. Yearly 
national 
estimates 

All 
Cardiovascular 
(less Myocardial 
Infarctions) 

Bell et al.  2012 187 U.S. 
Counties 

65-99  D24HourMean 0.0008 0.0001071 Log-linear  

Chronic Lung Ito 2003 Detroit, MI 65-99  D24HourMean 0.001169 0.002064 Log-linear  
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Effect Author Year Location Age Co-Poll Metric Beta Std Err Form Notes 

Congestive 
Heart Failure 

Ito 2003 Detroit, MI 65-99  D24HourMean 0.003074 0.001292 Log-linear  

Dysrhythmia Ito 2003 Detroit, MI 65-99  D24HourMean 0.001249 0.002033 Log-linear  

Ischemic Heart 
(less Myocardial 
Infarctions) 

Ito 2003 Detroit, MI 65-99  D24HourMean 0.001435 0.001156 Log-linear  

Pneumonia Ito 2003 Detroit, MI 65-99  D24HourMean 0.003979 0.001659 Log-linear  

All Respiratory Kloog et al. 2012 New England 65-99  D24HourMean 0.0007 0.0010 Log- linear  

Chronic Lung 
(less Asthma) 

Moolgavkar 2000 Los Angeles, CA 18-64  D24HourMean 0.002200 0.000733 Log-linear  

All 
Cardiovascular 
(less Myocardial 
Infarctions) 

Moolgavkar 2000 Los Angeles, CA 18-64  D24HourMean 0.001400 0.000341 Log-linear  

Chronic Lung Moolgavkar 2003 Los Angeles, CA 65-99  D24HourMean 0.001850 0.000524 Log-linear  

All 
Cardiovascular 
(less Myocardial 
Infarctions) 

Moolgavkar 2003 Los Angeles, CA 65-99  D24HourMean 0.001580 0.000344 Log-linear  

All 
Cardiovascular 
(less Myocardial 
Infarctions) 

Peng et al. 2008 108 U.S. 
Counties 

65-99  D24HourMean 0.0007 0.0001 Log-linear Emergency 
HA  

All 
Cardiovascular 
(less Myocardial 
Infarctions) 

Peng et al. 2009 119 U.S. 
Counties 

65-99  D24HourMean 0.0007 0.0002 Log-linear Urgent or 
emergency 
HA 

Asthma Sheppard 2003 Seattle, WA 0-64  D24HourMean 0.003324 0.001045 Log-linear  

All 
Cardiovascular 
(less Myocardial 
Infarctions) 

Zanobetti et 
al. 

2009 26 U.S. 
Communities 

65-99  D24HourMean 0.00019 0.0003 Log-linear All seasons 

All Respiratory Zanobetti et 
al. 

2009 26 U.S. 
Communities 

65-99  D24HourMean 0.0021 0.0004 Log-linear All seasons 

G.1.3.1   Babin et al. (2007)   

Babin et al. (2007) examined pediatric asthma-related emergency room (ER) visits and 
hospital admissions (ICD-9 code 493) in Washington, D.C. from 2001-2004 and their 
short-term associations with ozone, particulate matter, socioeconomic status, and age 
group. The association between PM2.5 and asthma hospitalization was found 
statistically insignificant.   

Hospital Admissions, Asthma (ICD-9 code 493)   

In a single-pollutant model, the coefficient and standard error are estimated from the 
average percent increase in risk (0.2%) and 95% confidence interval (95% CI: -0.6% - 
1.1%) for a 1 µg/m3 increase in same-day daily 24-hour mean PM2.5 (Babin et al., 2007, 
Table 2).   
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Note that although Babin et al. (2007) reports results for the 1-17 year old age range, 
for comparability to other studies, we apply the results to the population of ages 0 to 
17.  

G.1.3.2   Bell et al. (2008, 2012)   

Bell et al. (2008) evaluated the association between short-term exposure to PM2.5 and 
the risk of cardiovascular (ICD-9 codes 410-414, 26-427, 428, 429, 430-438, and 440-
449) and respiratory (ICD-9 codes 464-466, 480-487, and 490-492) hospital 
admissions among Medicare enrollees =65 years old varied by season and geographic 
region in 202 U.S. counties with populations greater than 200,000 from 1999-2005. 
Three time-series models were used to provide three key variables: consistent PM 
effects across the year, different PM effects by season, and smoothly varying PM effects 
throughout the year. A two-stage Bayesian hierarchical model was used to estimate the 
association between PM2.5 and hospitalization rates, with the first stage estimating the 
association within a single county and the second stage combining county- specific 
estimates. The authors found statistically significant evidence of seasonal and regional 
variation. Respiratory hospitalizations were highest in winter with a 1.05% increase 
(95%PI: 0.29-1.82) in hospitalizations per 10 µg/m3 increase in same-day PM2.5. A 
1.49% increase (95% PI: 1.09-1.89) in cardiovascular hospital admissions were also 
found for the winter season, and associations were observed in other seasons as well. 
The strongest association was for the northeast for both respiratory and cardiovascular 
admissions.   

Hospital Admissions, Cardio-, Cerebro- and Peripheral Vascular Disease (ICD-9 
codes 426-427, 428, 430-438, 410-414, 429; 440-449)   

For different seasons (i.e., autumn, spring, summer, winter, and all-year) and regions 
(i.e., southwest, northwest, southeast, southwest, and nationwide), the coefficient and 
standard error are estimated from the average percent increase in risk and 95% 
confidence interval for a 10 µg/m3 increase in same-day (lag 0) daily 24-hour mean 
PM2.5 (Bell et al., 2008, Table 2).   

Note that Bell et al. (2008) considered a broader range of ICD-9 codes and estimated the 
risk of both cardiovascular events and cerebro- and peripheral vascular disease. For 
comparability to other studies, EPA decided to apply a baseline hospitalization rate for 
ICD-9 codes 390-409 and 411-429 when using this C-R function in quantifying impacts.  

G.1.3.3   Ito (2003)  

Lippmann et al. (2000) studied the association between particulate matter and daily 
mortality and hospitalizations among the elderly in Detroit, MI. Data were analyzed for 
two separate study periods, 1985-1990 and 1992-1994. The 1992-1994 study period 
had a greater variety of data on PM size and was the main focus of the report. The 
authors collected hospitalization data for a variety of cardiovascular and respiratory 
endpoints. They used daily air quality data for PM10, PM2.5, and PM10-2.5 in a Poisson 
regression model with generalized additive models (GAM) to adjust for nonlinear 
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relationships and temporal trends. In single pollutant models, all PM metrics were 
statistically significant for pneumonia (ICD codes 480-486), PM10-2.5 and PM10 were 
significant for ischemic heart disease (ICD code 410-414), and PM2.5 and PM10 were 
significant for heart failure (ICD code 428). There were positive, but not statistically 
significant associations, between the PM metrics and COPD (ICD codes 490-496) and 
dysrhythmia (ICD code 427). In separate co-pollutant models with PM and either ozone, 
SO2, NO2, or CO, the results were generally comparable.   

In response to concerns with the Splus issue, Ito (2003) reanalyzed the study by 
Lippmann et al. (2000). The reanalysis by Ito reported that more generalized additive 
models with stringent convergence criteria and generalized linear models resulted in 
smaller relative risk estimates.  

Chronic Lung Disease (ICD-9 codes 490-496)   

The coefficient and standard error are based on the relative risk (1.043) and 95% 
confidence interval (0.902-1.207) for a 36 µg/m3 increase in PM2.5 in the 3-day lag GAM 
stringent model (Ito, 2003, Table 8).   

Congestive Heart Failure (ICD-9 code 428)   

The co-pollutant coefficient and standard error are calculated from a relative risk of 
1.117 (95% CI 1.020-1.224) for a 36 µg/m3 increase in PM2.5 in the 1-day lag GAM 
stringent model (Ito, 2003, Table 11).   

Dysrhythmia (ICD-9 code 427)   

The co-pollutant coefficient and standard error are calculated from a relative risk of 
1.046 (95% CI 0.906-1.207) for a 36 µg/m3 increase in PM2.5 in the 1-day lag GAM 
stringent model (Ito, 2003, Table 10).   

Ischemic Heart Disease (ICD-9 codes 411-414)   

The co-pollutant coefficient and standard error are calculated from a relative risk of 
1.053 (95% CI 0.971-1.143) for a 36 µg/m3 increase in PM2.5 in the 1-day lag GAM 
stringent model (Ito, 2003, Table 9). Note that Lippmann et al. (2000) report results for 
ICD codes 410-414. In the benefit analysis, avoided nonfatal heart attacks are estimated 
using the results reported by Peters et al. (2001).  The baseline rate in the Peters et al. 
function is a modified heart attack hospitalization rate (ICD code 410), since most, if not 
all, nonfatal heart attacks will require hospitalization. In order to avoid double counting 
heart attack hospitalizations, we have excluded ICD code 410 from the baseline 
incidence rate used in this function.  
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Pneumonia (ICD-9 codes 480-487)   

The estimated PM2.5 coefficient and standard error are based on a relative risk of 1.154 
(95% CI -1.027, 1.298) due to a PM2.5 change of 36 µg/m3 in the 1-day lag GAM 
stringent model (Ito, 2003, Table 7).   

G.1.3.4   Kloog et al. (2012) 

Kloog et al. (2012) examined the relationship between both short-term and long-term 
PM2.5 exposure and emergent hospital admissions for respiratory (ICD-9 codes 460-
519) and cardiovascular (ICD-9 codes 390-429) diseases in the New-England states of 
Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont. The 
study used hospital admission data from the U.S. Medicare program for only patients 
that were at least 65 years old. Short-term exposure models looked at the mean 24-
hour PM2.5 concentration on the day of a patient’s hospital admission, while long-term 
exposure was defined to be the mean PM2.5 concentration over the entire study period 
(2000-2006). Results of the study showed an association between PM2.5 and hospital 
admissions for all disease types in both the short and long term. 

Hospital Admissions, Respiratory (ICD Codes 460-519) 

In a single pollutant model for patients over the age of 65, the coefficient and standard 
error were estimated from the percent change (0.70%) and 95% confidence interval 
(0.35%-1.05%) for a 10 µg/m3 increase in same day (0 lag) 24-hour mean PM2.5 

concentration. 

G.1.3.5   Moolgavkar (2000a)  

Moolgavkar (2000a) examined the association between air pollution and COPD hospital 
admissions (ICD 490-496) in the Chicago, Los Angeles, and Phoenix metropolitan areas. 
He collected daily air pollution data for ozone, SO2, NO2, CO, and PM10 in all three areas. 
PM2.5 data was available only in Los Angeles. The data were analyzed using a Poisson 
regression model with generalized additive models to adjust for temporal trends. 
Separate models were run for 0- to 5-day lags in each location. Among the 65+ age 
group in Chicago and Phoenix, weak associations were observed between the gaseous 
pollutants and admissions. No consistent associations were observed for PM10. In Los 
Angeles, marginally significant associations were observed for PM2.5, which were 
generally lower than for the gases. In co-pollutant models with CO, the PM2.5 effect was 
reduced. Similar results were observed in the 0-19 and 20-64 year old age groups.   

The PM2.5 C-R functions are based on the single and co-pollutant models (PM2.5 and CO) 
reported for the 20-64 and 65+ age groups. Since the true PM effect is most likely best 
represented by a distributed lag model, then any single lag model should underestimate 
the total PM effect. As a result, we selected the lag models with the greatest effect 
estimates for use in the C-R functions.   
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Hospital Admissions, Chronic Lung Disease Less Asthma (ICD-9 codes 490-492, 494-
496)   

In a model with CO, the coefficient and standard error are calculated from an estimated 
percent change of 2.0 and t-statistic of 2.2 for a 10 µg/m3 increase in PM2.5 in the two-
day lag model (Moolgavkar, 2000a, Table 4, p. 81). In a log-linear model, the percent 
change is equal to (RR - 1) * 100.   

In this study, Moolgavkar defines and reports the “estimated” percent change as (log RR 
* 100). Because the relative risk is close to 1, RR-1 and log RR are essentially the same. 
For example, a true percent change of 2.0 would result in a relative risk of 1.020 and 
coefficient of 0.001980. The “estimated” percent change, as reported by Moolgavkar, of 
2.0 results in a relative risk of 1.020201 and coefficient of 0.002.   

Note that although Moolgavkar (2000a) reports results for the 20-64 year old age 
range, for comparability to other studies, we apply the results to the population of ages 
18 to 64. Note also that in order to avoid double counting non-elderly asthma 
hospitalizations (ICD code 493), which are typically estimated separately in EPA benefit 
analyses, we have excluded ICD code 493 from the baseline incidence rate used in this 
function.  

G.1.3.6   Moolgavkar (2000b), Cardiovascular   

Moolgavkar (2000b) examined the association between air pollution and 
cardiovascular hospital admissions (ICD 390-429) in the Chicago, Los Angeles, and 
Phoenix metropolitan areas. He collected daily air pollution data for ozone, SO2, NO2, 
CO, and PM10 in all three areas. PM2.5 data was available only in Los Angeles. The data 
were analyzed using a Poisson regression model with generalized additive models to 
adjust for temporal trends. Separate models were run for 0 to 5 day lags in each 
location. Among the 65+ age group, the gaseous pollutants generally exhibited stronger 
effects than PM10 or PM2.5. The strongest overall effects were observed for SO2 and CO. 
In a single pollutant model, PM2.5 was statistically significant for lag 0 and lag 1. In co-
pollutant models with CO, the PM2.5 effect dropped out and CO remained significant. For 
ages 20-64, SO2 and CO exhibited the strongest effect and any PM2.5 effect dropped out 
in co-pollutant models with CO.   

Hospital Admissions, All Cardiovascular (ICD codes 390-409, 411-429)   

The single pollutant coefficient and standard error are calculated from an estimated 
percent change of 1.4 and t-statistic of 4.1 for a 10 µg/m3 increase in PM2.5 in the zero 
lag model (Moolgavkar, 2000b, Table 4, p. 1203).   

Note that (Moolgavkar (2000b) report results that include ICD code 410 (heart attack). 
In a benefit analysis, avoided nonfatal heart attacks are typically estimated separately. 
The baseline rate in the Peters et al. function is a modified heart attack hospitalization 
rate (ICD code 410), since most, if not all, nonfatal heart attacks will require 
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hospitalization. In order to avoid double counting heart attack hospitalizations, we have 
excluded ICD code 410 from the baseline incidence rate used in this function.  

G.1.3.7   Moolgavkar (2003)  

Moolgavkar (2000a) examined the association between air pollution and COPD hospital 
admissions (ICD 490-496) in the Chicago, Los Angeles, and Phoenix metropolitan areas. 
In response to concerns with Splus issue, Moolgavkar (2003) reanalyzed his earlier 
studies. In the reanalysis, he reported that more generalized additive models with 
stringent convergence criteria and generalized linear models resulted in smaller 
relative risk estimates.   

Hospital Admissions, Chronic Lung (ICD-9 codes 490-496)   

The coefficient and standard error are calculated from an estimated percentage change 
of 1.85 and a t-statistic of 3.53 for a 10 µg/m3 increase in PM2.5 in the 2-day lag GAM-
30df stringent (10-8) model (Moolgavkar, 2003, Table 17). In a log-linear model, the 
percent change is equal to (RR - 1) * 100.   

The PM2.5 C-R functions for the 65+ age group are based on the reanalysis in 
Moolgavkar (2003) of the single and co-pollutant models (PM2.5 and CO). The true PM 
effect is most likely best represented by a distributed lag model, then any single lag 
model should underestimate the total PM effect. As a result, we selected the lag models 
with the greatest effect estimates for use in the C-R functions.   

Hospital Admissions, All Cardiovascular (ICD-9 codes 390-429)   

The single pollutant coefficient and standard error are calculated from an estimated 
percent change of 1.58 and t-statistic of 4.59 for a 10 µg/m3 increase in PM2.5 in the 0-
day lag GAM-30df stringent (10-8) model (Moolgavkar, 2003, Table 12). In a log-linear 
model, the percent change is equal to (RR - 1) * 100.  

G.1.3.8   Peng et al. (2008)  

Peng et al. (2008) examined the risk of hospital admissions for cardiovascular and 
respiratory diseases in relation to particulate matter (PM10-2.5 and PM2.5). To 
accomplish this, the authors utilized a database of 108 U.S. counties with daily 
emergency hospital admission rates for cardiovascular and respiratory diseases among 
Medicare enrollees living 9 miles from air monitors, temperature, and dew-point 
temperature. PM10-2.5 and PM2.5 concentrations were calculated by using monitoring 
data from January 1, 1999 through December 31, 2005. Overall, there were 3.7 million 
cardiovascular disease and 1.4 million respiratory disease-related hospital admissions 
for the time period assessed. The authors found that a 10 µg/m3 increase in PM10-2.5 
was associated with a 0.36% increase (95% PI: 0.05-0.68%) in cardiovascular disease 
admissions on the same day, and a 0.25% increase (95% PI: -0.11-0.60%) after 
adjusting for PM2.5. For respiratory disease admissions, a 10 µg/m3 increase in PM10-2.5 
was found to be associated with an unadjusted 0.33% increase in respiratory disease 
admissions (95% PI: -0.21- 0.86%) and an adjusted 0.26% increase (95% PI: -0.32-
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0.84%) in emergency admissions.  Also, unadjusted associations of PM2.5 with 
cardiovascular and respiratory disease admissions were 0.71% (95% PI: 0.45-0.96%) 
for same-day exposure and 0.44% (95% PI: 0.06-0.82%) for exposure lagged by 2 days 
prior to hospital admission.     

Hospital Admissions, Cardio-, Cerebro-, and Peripheral Vascular Disease (ICD-9 
codes 426-427, 428, 430-438, 410-414, 429, 440-448)   

In a single-pollutant model, the coefficient and standard error are estimated from the 
percent change in daily admission (0.44%) and 95% posterior interval (95% PI: 0.06-
0.82%) for a 10 µg/m3 increase in daily 24-hour mean PM2.5 concentrations for the 
same day (Peng et al., 2008, page 2175).   

Note that Peng et al. (2008) considered a broader range of ICD-9 codes and estimated 
the risk of both cardiovascular events and cerebro- and peripheral vascular disease. For 
comparability to other studies, EPA decided to apply a baseline hospitalization rate for 
ICD-9 codes 390-409 and 411-429 when using this C-R function in quantifying impacts.   

G.1.3.9   Peng et al. (2009)  

Peng et al. (2009) investigated the relationship between hospital admissions for 
cardiovascular and respiratory disease and the chemical components of PM2.5 across 
119 U.S. urban communities for 12 million Medicare enrollees using log-linear Poisson 
regression models. This was achieved using a national database with daily data from 
2000-2006 on emergency hospital admissions of cardiovascular and respiratory 
outcomes, ambient levels of PM2.5 components and weather variables. Bayesian 
hierarchical statistical models were used to estimate the associations. Three scenarios 
for PM2.5 exposure were assessed which were as follows: 1) for the period 2000-2006 
and including only days with available measurements for all 7 PM2.5 components from 
the Speciation Trends network (STN); 2) PM2.5 measured by the STN for the period 
2000-2006 and including only days with available measurements for all 7 PM2.5 
components from the STN and 3) PM2.5 estimated as the sum of the 7 largest 
components of PM2.5 mass for the period 2000-2006. Results of percent increases in 
emergency admissions associated with PM2.5 at lag 0 under these scenarios were 
showed in Figure 2 and the results for the components of PM2.5 from both single and 
multi-pollutant models were showed in Figure 3.  In multi-pollutant models that 
adjusted for the levels of other pollutants, the authors found that an interquartile range 
increase in elemental carbon was associated with a 0.80% increase (95% PI: 0.34-
1.27%) in risk of same-day cardiovascular admissions. Similarly, an interquartile range 
increase in organic carbon matter was associated with a 1.01% increase (95% PI: 0.04-
1.98%) risk of respiratory admissions on the same day.   

Hospital Admissions, Cardio-, Cerebro-, and Peripheral Vascular Disease (ICD-9 
codes 426-427, 428, 430-438, 410-414, 429, 440-448)   

In a single-pollutant model, the coefficient and standard error are estimated from the 
percent change in daily admission (0.68%) and 95% posterior interval (95% PI: 0.26-
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1.10%) for a 10 µg/m3 increase in daily 24-hour mean PM2.5 concentrations for the 
same day (Peng et al., 2009, page 960).   

Note that Peng et al. (2009) considered a broader range of ICD-9 codes and estimated 
the risk of both cardiovascular events and cerebro- and peripheral vascular disease. For 
comparability to other studies, EPA decided to apply a baseline hospitalization rate for 
ICD-9 codes 390-409 and 411-429 when using this C-R function in quantifying impacts.  

G.1.3.10   Sheppard (2003)  

Sheppard et al. (1999) studied the relation between air pollution in Seattle and 
nonelderly (<65) hospital admissions for asthma from 1987 to 1994. They used air 
quality data for PM10, PM2.5, coarse PM10-2.5, SO2, ozone, and CO in a Poisson regression 
model with control for time trends, seasonal variations, and temperature-related 
weather effects. PM2.5 levels were estimated from light scattering data. They found 
asthma hospital admissions associated with PM10, PM2.5, PM10-2.5, CO, and ozone. They 
did not observe an association for SO2. They found PM and CO to be jointly associated 
with asthma admissions. The best fitting co-pollutant models were found using ozone. 
However, ozone data was only available April through October, so they did not consider 
ozone further. For the remaining pollutants, the best fitting models included PM2.5 and 
CO. Results for other co-pollutant models were not reported.   

In response to concerns that the work by Sheppard et al. (1999) may be biased because 
of the Splus issue, Sheppard (2003) reanalyzed some of this work, in particular 
Sheppard reanalyzed the original study’s PM2.5 single pollutant model.   

Hospital Admissions, Asthma (ICD-9 code 493)   

The coefficient and standard error are based on the relative risk (1.04) and 95% 
confidence interval (1.01-1.06) for a 11.8 µg/m3 increase in PM2.5 in the 1-day lag GAM 
stringent model (Sheppard, 2003, pp. 228-229).  

G.1.3.11   Zanobetti et al. (2009)  

Zanobetti et al. (2009) examined the relationship between daily PM2.5 levels and 
emergency hospital admissions for cardiovascular causes, myocardial infarction, 
congestive heart failure, respiratory disease and diabetes among 26 U.S. communities 
from 2000-2003. The authors used meta-regression to examine how this association 
was modified by season- and community-specific PM2.5 composition while controlling 
for seasonal temperature as a substitute for ventilation. Overall, the authors found that 
PM2.5 mass higher in Ni, As, and Cr as well as Br and organic carbon significantly 
increased its effects on hospital admissions. For a 10 µg/m3 increase in 2-day averaged 
PM2.5, the authors found a 1.89% (95% CI: 1.34-2.45) increase in cardiovascular disease 
admissions, a 2.25% (95% CI: 1.10-3.42) increase in myocardial infarction admissions, 
a 1.85% (95% CI: 1.19-2.51) increase in congestive heart failure admissions, a 2.74% 
(95% CI: 1.30-4.20) increase in diabetes admissions, and a 2.07% (95% CI: 1.20-2.95) 
increase in respiratory admissions. The relationship between PM2.5 and cardiovascular 
admissions was significantly modified when the mass of PM2.5 was high in Br, Cr, Ni, and 
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sodium ions, while mass high in As, Cr, Mn, organic carbon, Ni and sodium ions modified 
the myocardial infarction relationship and mass high in As, organic carbon, and sulfate 
ions modified the diabetes admission rates.   

Hospital Admissions, All Cardiovascular (ICD-9 codes 390-429)   

In a single-pollutant model, the coefficient and standard error are estimated from the 
percent change in risk (1.89%) and 95% confidence interval (1.34%-2.45%) for a 10 
µg/m3 increase in 2-day averaged PM2.5 (Zanobetti et al., 2009, Table 3).   

Note that Zanobetti et al. (2009) report results for ICD codes 390-429. In the benefit 
analysis, avoided nonfatal heart attacks are estimated separately. In order to avoid 
double counting heart attack hospitalizations, we have excluded ICD code 410 from the 
baseline incidence rate used in this function.   

Hospital Admissions, All Respiratory (ICD-9 codes 460-519)   

In a single-pollutant model, the coefficient and standard error are estimated from the 
percent change in risk (2.07%) and 95% confidence interval (1.2% - 2.95%) for a 10 
µg/m3 increase in 2-day averaged PM2.5 (Zanobetti et al., 2009, Table 3).  

G.1.4 Emergency Room Visits  
Table G-8 summarizes the additional health impacts functions used to estimate the 
relationship between PM2.5 and emergency room visits. Below, we present a brief 
summary of each of the studies and any items that are unique to the study.  

Table G-8. Additional Health Impact Functions for Particulate Matter and 
Emergency Room Visits 

Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

Asthma Glad et al. 2012 Pittsburgh, 
PA 0-99 

 D24HourMean 0.00392 0.00284 Logistic All 
Races 

Asthma Mar et al. 2010 Greater 
Tacoma, WA 0-99  D24HourMean 0.0056 0.0021 Log-

linear 
 

Emergency 
Room Visits, 
Asthma 

Norris et al.  1999 Seattle, WA 0-17 NO2, 
SO2 

D24HourMean 0.016527 0.004139 Log-
linear 

 

Asthma Slaughter 
et al. 

2005 Spokane, WA 0-99  D24HourMean 0.0029 0.0027 Log-
linear 

 

 

G.1.4.1   Glad et al. (2012)   

Glad et al. (2012) examined the relationship between air pollution and emergency 
department visits for asthma (ICD-9 code 493) in six Pittsburgh, PA hospitals between 
2002 and 2005. The study includes a total of 6,979 individuals with a primary discharge 
diagnosis of asthma. Using a case-crossover methodology, particulate matter with an 
aerodynamic diameter ≤2.5μm (PM2.5) had an effect both on the total population on day 
1 after exposure (1.036, p <0.05), and on African Americans for day-1 lag (OR =1.055; 
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95% CI, 1.001–1.112), day-2 lag (OR=1.067; 95% CI, 1.015–1.122), day-3 lag 
(OR=1.053; 95% CI, 1.002–1.106), and the 6-day average (OR =1.088; 95% CI, 1.001–
1.184). PM2.5 had no significant effect on Caucasian Americans alone. The disparity in 
risk estimates by race may reflect differences in residential characteristics, exposure to 
ambient air pollution, or a differential effect of pollution by race. 

Emergency Room Visits, Asthma (ICD-9 Code 493) – by Age and Racial Group 

In a single pollutant model for patients of all ages and all races, the coefficient and 
standard error were estimated from the odds ratio (1.04) and 95% confidence interval 
(0.984 – 1.10) for a 10 µg/m3 increase in 24-hour mean PM2.5 concentration averaged 
over lags 0-6 days (Glad et al., 2012, Table 3). 

G.1.4.2   Mar et al. (2010)   

Mar et al. (2010) assessed the effect of particulate matter air pollution, including 
emissions from diesel generators, on emergency room visits for asthma in the greater 
Tacoma, Washington area from January 3, 1998, to May 30, 2002, using Poisson 
regression models. Health data were collected for individuals of all ages from 6 Tacoma 
hospitals. The authors also assessed the impacts of diesel generator use on emergency 
room visits for asthma from January 24, 2001, to June 2, 2001. Overall, the researchers 
found an association between daily PM2.5 levels and emergency room visits for asthma 
at lag days 2 and 3, with a relative risk for lag day 2 of 1.04 (95% CI: 1.01-1.07) and a 
relative risk for lag day 3 of 1.03 (95% CI: 1.0-1.06). No significant association between 
emergency room visits for asthma and increased use of the diesel generators was 
observed.   

Emergency Room Visits, Asthma (ICD-9 code not reported)   

In a single-pollutant model, the coefficient and standard error are estimated from the 
relative risk (1.04) and 95% confidence interval (95% CI: 1.01-1.07) for a 7 µg/m3 
increase in daily 24-hour mean PM2.5 at lag day 2 (Mar et al., 2010, Table 4).   

G.1.4.3   Norris et al. (1999)   

Norris et al. (1999) examined the relation between air pollution in Seattle and 
childhood (<18) hospital admissions for asthma from 1995 to 1996. The authors used 
air quality data for PM10, light scattering (used to estimate fine PM), CO, SO2, NO2, and 
O3 in a Poisson regression model with adjustments for day of the week, time trends, 
temperature, and dew point. They found significant associations between asthma ER 
visits and light scattering (converted to PM2.5), PM10, and CO. No association was found 
between O3, NO2, or SO2 and asthma ER visits, although O3 had a significant amount of 
missing data. In multipollutant models with either PM metric (light scattering or PM10) 
and NO2 and SO2, the PM coefficients remained significant while the gaseous pollutants 
were not associated with increased asthma ER visits. The PM C-R functions are based 
on results of the single and multipollutant models reported.   
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Emergency Room Visits, Asthma   

In a model with NO2 and SO2, the PM2.5 coefficient and standard error are calculated 
from a relative risk of 1.17 (95% CI 1.08-1.26) for a 9.5 µg/m3 increase in PM2.5 (Norris 
et al., 1999, p.491). 

G.1.4.4   Slaughter et al. (2005)   

Slaughter et al. (2005) examined the short-term association of particulate matter (PM1, 
PM2.5, PM10, and PM10-2.5) and carbon monoxide with hospital admissions and 
emergency room visits for respiratory and cardiac outcomes and mortality in Spokane, 
Washington, from January 1995 to June 2001 using a log-linear generalized linear 
model. The authors found no association between respiratory emergency room visits 
and any size fraction of PM, but there was a suggestive relationship between fine PM 
and respiratory effects when compared to coarse PM. No association between cardiac 
hospital admissions or mortality and any size fraction of PM or CO was observed at the 
0- to 3-day lag. CO, on the other hand, was found to be associated with all respiratory 
emergency room visits and visits for asthma at the 3-day lag.   

Emergency Room Visits, Asthma (ICD-9 code 493)   

In a single-pollutant model, the coefficient and standard error are estimated from the 
relative risk (1.03) and 95% confidence interval (95% CI: 0.98-1.09) for a 10 µg/m3 
increase in daily 24-hour mean PM2.5 at 1-day lag (Slaughter et al., 2005, Table 4).   

G.1.5 Minor Effects   
Table G-9 summarizes the additional health impacts functions used to estimate the 
relationship between PM2.5 and minor effects. Below, we present a brief summary of 
each of the studies and any items that are unique to the study.   

Table G-9.  Additional Health Impact Functions for Particulate Matter and Minor 
Effects 

Effect Author Year Location Age Co-Poll Metric Beta Std Err Form 

Acute 
Bronchitis 

Dockery et 
al. 

1996 24 communities 8-12  Annual 0.027212 0.017096 Logistic 

Work Loss 
Days 

Ostro 1987 Nationwide 18-64  D24HourMean 0.004600 0.000360 Log-linear 

Minor 
Restricted 
Activity Days 

Ostro and 
Rothschild 

1989 Nationwide 18-64 Ozone D24HourMean 0.007410 0.000700 Log-linear 

Lower 
Respiratory 
Symptoms 

Schwartz 
and Neas 

2000 6 U.S. cities 7-14  D24HourMean 0.019012 0.006005 Logistic 

 
G.1.5.1   Dockery et al. (1996)   

Dockery et al. (1996) examined the relationship between PM and other pollutants on 
the reported rates of asthma, persistent wheeze, chronic cough, and bronchitis, in a 
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study of 13,369 children ages 8-12 living in 24 communities in U.S. and Canada. Health 
data were collected in 1988-1991, and single-pollutant models were used in the 
analysis to test a number of measures of particulate air pollution. Dockery et al. found 
that annual level of sulfates and particle acidity were significantly related to bronchitis, 
and PM2.1 and PM10 were marginally significantly related to bronchitis. The original 
study measured PM2.1, however when using the study’s results we use PM2.5. This 
makes only a negligible difference, assuming that the adverse effects of PM2.1 and PM2.5 
are comparable. They also found nitrates were linked to asthma, and sulfates linked to 
chronic phlegm. It is important to note that the study examined annual pollution 
exposures, and the authors did not rule out that acute (daily) exposures could be 
related to asthma attacks and other acute episodes. Earlier work, by Dockery et al. 
(1989), based on six U.S. cities, found acute bronchitis and chronic cough significantly 
related to PM15. Because it is based on a larger sample, the Dockery et al. (1996) study 
is the better study to develop a C-R function linking PM2.5 with bronchitis.   

Bronchitis was counted in the study only if there were “reports of symptoms in the past 
12 months” (Dockery et al., 1996, p. 501). It is unclear, however, if the cases of 
bronchitis are acute and temporary, or if the bronchitis is a chronic condition. Dockery 
et al. found no relationship between PM and chronic cough and chronic phlegm, which 
are important indicators of chronic bronchitis. For this analysis, we assumed that the C-
R function based on Dockery et al. is measuring acute bronchitis. The C-R function is 
based on results of the single pollutant model reported in Table 1.   

Acute Bronchitis   

The estimated logistic coefficient and standard error are based on the odds ratio (1.50) 
and 95% confidence interval (0.91-2.47) associated with being in the most polluted city 
(PM2.1 = 20.7 µg/m3) versus the least polluted city (PM2.1 = 5.8 µg/m3) (Dockery et al., 
1996, Tables 1 and 4). The original study used PM2.1, however, we use the PM2.1 

coefficient and apply it to PM2.5 data.   

Incidence Rate: annual bronchitis incidence rate per person = 0.043 (American Lung 
Association, 2002a, Table 11)   

Population: population of ages 8-12.  

G.1.5.2   Ostro (1987)   

See full study description under Ostro (1987) in Appendix E, Section E.5.1. 

G.1.5.3   Ostro and Rothschild (1989)  

See full study description under Ostro and Rothschild (1989) in Appendix E, Section 
E.5.2. 

G.1.5.4   Schwartz and Neas (2000)   

Schwartz et al. (2000) replicated a previous analysis (Schwartz et al., 1994) linking PM 
levels to lower respiratory symptoms in children in six cities in the U.S. The original 
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study enrolled 1,844 children into a year-long study that was conducted in different 
years (1984 to 1988) in six cities. The students were in grades two through five at the 
time of enrollment in 1984. By the completion of the final study, the cohort would then 
be in the eighth grade (ages 13-14); this suggests an age range of 7 to 14. The previous 
study focused on PM10, acid aerosols, and gaseous pollutants, although single-pollutant 
PM2.5 results were reported. Schwartz et al. (2000) focused more on the associations 
between PM2.5 and PM10-2.5 and lower respiratory symptoms. In single and co-pollutant 
models, PM2.5 was significantly associated with lower respiratory symptoms, while 
PM10-2.5 was not. PM10-2.5 exhibited a stronger association with cough than did PM2.5. 
The PM2.5 C-R functions for lower respiratory symptoms are based on the results of the 
reported single pollutant and co-pollutant model (PM2.5 and PM10-2.5).   

Lower Respiratory Symptoms   

The coefficient and standard error are calculated from the reported odds ratio (1.33) 
and 95% confidence interval (1.11-1.58) associated with a 15 µg/m3 change in PM2.5 
(Schwartz and Neas, 2000, Table 2).   

Incidence Rate: daily lower respiratory symptom incidence rate per person = 0.0012 
(Schwartz et al., 1994, Table 2)   

Population: population of ages 7 to 14   

G.1.6 Asthma-Related Effects   
Table G-10 summarizes the additional health impacts functions used to estimate the 
relationship between PM2.5 and asthma exacerbation. Below, we present a brief 
summary of each of the studies and any items that are unique to the study.  

Table G-10. Additional Health Impact Functions for Particulate Matter and Asthma-
Related Effects 

Effect Author Year Location Age Co-Poll Metric Beta Std Err Form Notes 

Cough Mar et al. 2004 Spokane, WA 6-18  D24HourMean 0.0191 0.0098 Logistic Uses 
incidence rate 
from Ostro et 
al. (2001). 
Age range 
adjusted. 

Shortness of 
Breath 

Mar et al. 2004 Spokane, WA 6-18  D24HourMean 0.0122 0.0138 Logistic Uses 
incidence rate 
from Ostro et 
al. (2001). 
Age range 
adjusted. 

Cough Ostro et al. 2001 Los Angeles, CA 6-18  D24HourMean 0.000985 0.000747 Logistic  

Shortness of 
Breath 

Ostro et al. 2001 Los Angeles, CA 6-18  D24HourMean 0.002565 0.001335 Logistic  

Wheeze Ostro et al. 2001 Los Angeles, CA 6-18  D24HourMean 0.001942 0.000803 Logistic  

Upper 
Respiratory 
Symptoms 

Pope et al. 1991 Utah Valley 9-11  D24HourMean 0.003600 0.001500 Logistic  
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G.1.6.1   Mar et al. (2004)   

Mar et al. (2004) studied the effects of various size fractions of particulate matter on 
respiratory symptoms of adults and children with asthma, monitored over many 
months. The study was conducted in Spokane, Washington, a semiarid city with diverse 
sources of particulate matter. Data on respiratory symptoms and medication use were 
recorded daily by the study’s subjects, while air pollution data was collected by the local 
air agency and Washington State University. Subjects in the study consisted of 16 
adults—the majority of whom participated for over a year—and nine children, all of 
whom were studied for over eight months. Among the children, the authors found a 
strong association between cough symptoms and several metrics of particulate matter, 
including PM2.5. However, the authors found no association between respiratory 
symptoms and PM of any metric in adults. Mar et al. therefore concluded that the 
discrepancy in results between children and adults was due either to the way in which 
air quality was monitored, or a greater sensitivity of children than adults to increased 
levels of PM air pollution.   

Asthma Exacerbation, Cough   

In a single-pollutant model, the coefficient and standard error are estimated from the 
odds ratio (1.21) and 95% confidence interval (1.00-1.47) for a 10.0 µg/m3 increase in 
1-day lagged concentration of PM2.5 (Mar et al., 2004, Table 7).   

Incidence Rate: Daily cough rate per person = 14.5%. Mar et al. (2004) did not report 
the incidence rate for each type of asthma exacerbation. The daily cough rate from 
Ostro et al. (2001, p.202) is applied here.   

Population: The study reported results for population ages 7-12. For comparability to 
other studies, we apply the results to the population of ages 6 to 18. We treat this as 
two groups based on the available information from American Lung Association 
(2010b, Table 7). Asthmatic population ages 6 to 17 = 10.70% of population ages 6 to 
17 and asthmatic population age 18 = 7.19% of population age 18. The American Lung 
Association (2010b, Table 7) estimates asthma prevalence for children 5- 17 and adults 
18-44 at 10.70% and 7.19% respectively (based on data from the 2008 National Health 
Interview Survey).   

Asthma Exacerbation, Shortness of Breath   

In a single-pollutant model, the coefficient and standard error are estimated from the 
odds ratio (1.13) and 95% confidence interval (0.86-1.48) for a 10.0 µg/m3 increase in 
current-day concentration of PM2.5 (Mar et al., 2004, Table 7).   

Incidence Rate: Daily shortness of breath rate per person = 7.4%. Mar et al. (2004) did 
not report the incidence rate for each type of asthma exacerbation. The daily rate of 
shortness of breath from Ostro et al. (2001, p.202) is applied here.   



 Appendix G:  Additional Health Impact Functions in U.S. Setup 

BenMAP-CE User’s Manual Appendices March 2023 
G-51 

Population: See the population description for “Asthma Exacerbation, Cough” from 
Mar et al. (2004).   

G.1.6.2   Ostro et al. (2001)   

Ostro et al. (2001) studied the relation between air pollution in Los Angeles and asthma 
exacerbation in African-American children (8 to 13 years old) from August to 
November 1993. They used air quality data for PM10, PM2.5, NO2, and O3 in a logistic 
regression model with control for age, income, time trends, and temperature-related 
weather effects. The authors note that there were 26 days in which PM2.5 
concentrations were reported higher than PM10 concentrations. The majority of results 
the authors reported were based on the full dataset. These results were used for the 
basis for the C-R functions. Asthma symptom endpoints were defined in two ways: 
“probability of a day with symptoms” and “onset of symptom episodes”. New onset of a 
symptom episode was defined as a day with symptoms followed by a symptom- free 
day.   

The authors found cough prevalence associated with PM10 and PM2.5 and cough 
incidence associated with PM2.5, PM10, and NO2. Ozone was not significantly associated 
with cough among asthmatics. The authors found that both the prevalent and incident 
episodes of shortness of breath were associated with PM2.5 and PM10. Neither ozone nor 
NO2 were significantly associated with shortness of breath among asthmatics. The 
authors found both the prevalence and incidence of wheeze associated with PM2.5, PM10, 
and NO2. Ozone was not significantly associated with wheeze among asthmatics.   

The derived health impact functions are based on the results of single pollutant models 
looking at the probability of symptoms.   

Asthma Exacerbation, Cough   

The coefficient and standard error are based on an odds ratio of 1.03 (95% CI 0.98-
1.07) for a 30 µg/m3 increase in 12-hour average PM2.5 concentration (Ostro et al., 
2001, Table 4, p.204).   

Incidence Rate: daily cough rate per person (Ostro et al., 2001, p.202) = 0.145   

Population: The study reported results for African-American population ages 8-13. For 
comparability to other studies, we apply the results to the African-American population 
of ages 6 to 18. We treat this as two groups based on the available information from 
American Lung Association (2010b, Table 9). Asthmatic African-American population 
ages 6 to 17 = 17.76% of African-American population ages 6 to 17 and asthmatic 
African-American population age 18 = 7.52% of African-American population age 18. 
The American Lung Association (2010b, Table 9) estimates asthma prevalence for 
children 5- 17 and adults 18-44 at 17.76% and 7.52% respectively (based on data from 
the 2008 National Health Interview Survey).   
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Asthma Exacerbation, Shortness of Breath   

The coefficient and standard error are based on an odds ratio of 1.08 (95% CI 1.00-
1.17) for a 30 µg/m3 increase in 12-hour average PM2.5 concentration (Ostro et al., 
2001, Table 4, p.204).   

Incidence Rate: daily shortness of breath rate per person (Ostro et al., 2001, p.202) = 
0.074   

Population: The study reported results for African-American population ages 8-13. For 
comparability to other studies, we apply the results to the African-American population 
of ages 6 to 18. We treat this as two groups based on the available information from 
American Lung Association (2010b, Table 9). Asthmatic African-American population 
ages 6 to 17 = 17.76% of African-American population ages 6 to 17 and asthmatic 
African-American population age 18 = 7.52% of African-American population age 18. 
The American Lung Association (2010b, Table 9) estimates asthma prevalence for 
children 5- 17 and adults 18-44 at 17.76% and 7.52% respectively (based on data from 
the 2008 National Health Interview Survey).  

Asthma Exacerbation, Wheeze   

The coefficient and standard error are based on an odds ratio of 1.06 (95% CI 1.01-
1.11) for a 30 µg/m3 increase in 12-hour average PM2.5 concentration (Ostro et al., 
2001, Table 4, p.204).   

Incidence Rate: daily wheeze rate per person (Ostro et al., 2001, p.202) = 0.173   

Population: asthmatic African-American population ages 8 to 13 = 17.76% of African-
American population ages 8 to 13. (Described above.)   

G.1.6.3   Pope et al. (1991)  

Using logistic regression, Pope et al. (1991) estimated the impact of PM10 on the 
incidence of a variety of minor symptoms in 55 subjects (34 “school-based” and 21 
“patient-based”) living in the Utah Valley from December 1989 through March 1990. 
The children in the Pope et al. study were asked to record respiratory symptoms in a 
daily diary. With this information, the daily occurrences of upper respiratory symptoms 
(URS) and lower respiratory symptoms (LRS) were related to daily PM10 
concentrations. Pope et al. describe URS as consisting of one or more of the following 
symptoms: runny or stuffy nose; wet cough; and burning, aching, or red eyes. Levels of 
ozone, NO2, and SO2 were reported low during this period, and were not included in the 
analysis. The sample in this study is relatively small and is most representative of the 
asthmatic population, rather than the general population. The school-based subjects 
(ranging in age from 9 to 11) were chosen based on “a positive response to one or more 
of three questions: ever wheezed without a cold, wheezed for 3 days or more out of the 
week for a month or longer, and/or had a doctor say the ‘child has asthma’ (Pope et al., 
1991, p. 669).” The patient-based subjects (ranging in age from 8 to 72) were receiving 
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treatment for asthma and were referred by local physicians. Regression results for the 
school-based sample (Pope et al., 1991, Table 5) show PM10 significantly associated 
with both upper and lower respiratory symptoms. The patient-based sample did not 
find a significant PM10 effect. The results from the school-based sample are used here.  

Upper Respiratory Symptoms   

The coefficient and standard error for a one µg/m3 change in PM10 is reported in 
Table 5.   

Incidence Rate: daily upper respiratory symptom incidence rate per person = 0.3419 
(Pope et al., 1991, Table 2)   

Population: asthmatic population ages 9 to 11 = 10.70% of population ages 9 to 11. 
(The American Lung Association (2010b, Table 7) estimates asthma prevalence for 
children ages 5 to 17 at 10.70%, based on data from the 2008 National Health Interview 
Survey.)  

G.2 Additional Ozone Health Impact Functions 
Section G.2 summarizes the additional health impact functions for Ozone included in 
BenMAP-CE.   

G.2.1 Short-term Mortality   
Table G-11 summarizes the additional health impacts functions used to estimate the 
relationship between ozone and short-term mortality. Below, we present a brief 
summary of each of the studies and any items that are unique to the study.  

Table G-11. Additional Health Impact Functions for Ozone and Mortality* 

Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

Non-
Accidental 

Bell et al. 2004 95 US cities 0-99  D8HourMax 0.000261 0.000089 Log-
linear 

Warm 
season. 
8-hour 
max 
from 24-
hour 
mean 

Non-
Accidental 

Bell et al. 2004 95 US cities 0-99  D24HourMean 0.000520 0.000128 Log-
linear 

All year 

All Cause Bell et al. 2005 US & non-US 0-99  D8HourMax 0.000795 0.000212 Log-
linear 

Warm 
season. 
8-hour 
max 
from 24-
hour 
mean 

All Cause Bell et al. 2005 US & non-US 0-99  D24HourMean 0.001500 0.000401 Log-
linear 

Warm 
season 
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Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

Cardio-
pulmonary 

Huang et al. 2005 19 US cities 0-99  D8HourMax 0.000813 0.000259 Log-
linear 

Warm 
season. 
8-hour 
max 
from 24-
hour 
mean. 

Cardio-
pulmonary 

Huang et al. 2005 19 US cities 0-99  D24HourMean 0.001250 0.000398 Log-
linear 

Warm 
season 

Non-
Accidental 

Ito and 
Thurston 

1996 Chicago, IL 18-99 PM10 D1HourMax 0.000634 0.000251 Log-
linear 

 

Non-
Accidental 

Ito et al. 2005  0-99  D8HourMax 0.001173 0.000239 Log-
linear 

Warm 
season. 
8-hour 
max 
from 24-
hour 
mean. 

Non-
Accidental 

Ito et al. 2005  0-99  D1HourMax 0.000400 0.000066 Log-
linear 

1-hour 
max 

Non-
Accidental 

Ito et al. 2005  0-99  D24HourMean 0.001750 0.000357 Log-
linear 

Warm 
season. 
24-hour 
mean 

Non- 
Accidental 

Ito et al. 2005  0-99  D8HourMax 0.000532 0.000088 Log-
linear 

8-hour 
max 
from 1-
hour max 

Long Term 
Mortality, 
Respiratory 

Jerrett et al. 2009 86 urban areas 30-99 PM2.5 Annual 0.003922 0.001325 Log-
linear 

 

Long Term 
Mortality, 
Respiratory 

Jerrett et al. 2009 Northeast 30-99  Annual -0.001005 0.003853 Log-
linear 

 

Long Term 
Mortality, 
Respiratory 

Jerrett et al. 2009 Industrial 
Midwest 

30-99  Annual 0.000000 0.004604 Log-
linear 

 

Long Term 
Mortality, 
Respiratory 

Jerrett et al. 2009 Southeast 30-99  Annual 0.011333 0.003193 Log-
linear 

 

Long Term 
Mortality, 
Respiratory 

Jerrett et al. 2009 Upper 
Midwest 

30-99  Annual 0.013103 0.026212 Log-
linear 

 

Long Term 
Mortality, 
Respiratory 

Jerrett et al. 2009 Northwest 30-99  Annual 0.005827 0.003118 Log-
linear 

 

Long Term 
Mortality, 
Respiratory 

Jerrett et al. 2009 Southwest 30-99  Annual 0.019062 0.007583 Log-
linear 

 

Long Term 
Mortality, 
Respiratory 

Jerrett et al. 2009 Southern 
California 

30-99  Annual 0.000995 0.002767 Log-
linear 

 

Long Term 
Mortality, 
Respiratory 

Jerrett et al. 2009 86 urban areas 30-99 PM2.5 Annual 0.004471 0.001510 Log-
linear 
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Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

All Cause Levy et al. 2005 US and non-US 0-99  D8HourMax 0.001119 0.000179 Log-
linear 

Warm 
season. 
8-hour 
max 
from 1-
hour 
max. 

All Cause Levy et al. 2005 US and non-US 0-99  D1HourMax 0.000841 0.000134 Log-
linear 

Warm 
season. 

Non-
Accidental 

Moolgavkar 
et al. 

1995 Philadelphia, 
PA 

0-99  D24HourMean 0.001398 0.000266 Log-
linear 

Warm 
season. 

Non-
Accidental 

Moolgavkar 
et al. 

1995 Philadelphia, 
PA 

0-99 TSP, 
SO2 

D24HourMean 0.001389 0.000373 Log-
linear 

Warm 
season. 

Non-
Accidental 

Moolgavkar 
et al. 

1995 Philadelphia, 
PA 

18-99 TSP, 
SO2 

D24HourMean 0.000611 0.000216 Log-
linear 

 

Non-
Accidental 

Samet et al. 1997 Philadelphia, 
PA 

18-99 CO, 
NO2, 
SO2, 
TSP 

D24HourMean 0.000936 0.000312 Log-
linear 

 

Non-
Accidental 

Schwartz 2005 14 U.S. cities 0-99  D8HourMax 0.000426 0.000150 Logistic Warm 
season. 
8-hour 
max 
from 1-
hour 
max. 

Non-
Accidental 

Schwartz 2005 14 U.S. cities 0-99  D1HourMax 0.000370 0.000130 Logistic Warm 
season 

Non-
Accidental 

Smith et al. 2009 98 U.S. cities 0-99  D8HourMax 0.000322 0.000084 Log-
linear 

Ozone 
season 

Non-
Accidental 

Smith et al. 2009 98 U.S. cities 0-99 PM10 D8HourMax 0.000258 0.000167 Log-
linear 

Ozone 
season 

All-Cause Zanobetti 
and 
Schwartz 

2008 48 Cities 0-99  D8HourMax 0.00050 0.00012 Log- 
linear 

0-3 day 
lag, June-
August, 
1989-
2000 

*Unless otherwise stated, mortality is short-term. 
 

G.2.1.1   Bell et al. (2004)   

Ozone has been associated with various adverse health effects, including increased 
rates of hospital admissions and exacerbation of respiratory illnesses. Although 
numerous time-series studies have estimated associations between day-to-day 
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variation in ozone levels and mortality counts, results have been inconclusive. The 
authors investigated whether short-term (daily and weekly) exposure to ambient ozone 
is associated with mortality in the United States. Using analytical methods and 
databases developed for the National Morbidity, Mortality, and Air Pollution Study, they 
estimated a national average relative rate of mortality associated with short- term 
exposure to ambient ozone for 95 large US urban communities from 1987-2000. The 
authors used distributed-lag models for estimating community-specific relative rates of 
mortality adjusted for time-varying confounders (particulate matter, weather, 
seasonality, and long-term trends) and hierarchical models for combining relative rates 
across communities to estimate a national average relative rate, taking into account 
spatial heterogeneity. A 10-ppb increase in the previous week’s ozone was associated 
with a 0.52% increase in daily mortality (95% posterior interval [PI], 0.27%-0.77%) 
and a 0.64% increase in cardiovascular and respiratory mortality (95% PI, 0.31%-
0.98%). Effect estimates for aggregate ozone during the previous week were larger than 
for models considering only a single day’s exposure. Results were robust to adjustment 
for particulate matter, weather, seasonality, and long-term trends. These results 
indicate a statistically significant association between short-term changes in ozone and 
mortality on average for 95 large US urban communities, which include about 40% of 
the total US population.  

Non-Accidental Mortality   

The coefficient and standard error are based on the relative risk (1.003908) and 95% 
confidence interval (1.0013-1.0065) associated with a 10 ppb increase in daily average 
ozone (Bell et al., 2004, p. 2376).  

G.2.1.2   Bell et al. (2005)   

Although many time-series studies of ozone and mortality have identified positive 
associations, others have yielded null or inconclusive results, making the results of 
these studies difficult to interpret. The authors performed a meta-analysis of 144 effect 
estimates from 39 time-series studies, and estimated pooled effects by lags, age groups, 
cause-specific mortality, and concentration metrics. They compared results with pooled 
estimates from the National Morbidity, Mortality, and Air Pollution Study (NMMAPS), a 
time-series study of 95 large U.S. urban centers from 1987 to 2000. Both meta-analysis 
and NMMAPS results provided strong evidence of a short-term association between 
ozone and mortality, with larger effects for cardiovascular and respiratory mortality, 
the elderly, and current-day ozone exposure. In both analyses, results were insensitive 
to adjustment for particulate matter and model specifications. In the meta-analysis, a 
10-ppb increase in daily ozone at single-day or 2-day average of lags 0, 1, or 2 days was 
associated with an 0.87% increase in total mortality (95% posterior interval = 0.55% to 
1.18%), whereas the lag 0 NMMAPS estimate is 0.25% (0.12% to 0.39%). Several 
findings indicate possible publication bias: meta-analysis results were consistently 
larger than those from NMMAPS; meta-analysis pooled estimates at lags 0 or 1 were 
larger when only a single lag was reported than when estimates for multiple lags were 
reported; and heterogeneity of city-specific estimates in the meta-analysis were larger 
than with NMMAPS.   
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All-Cause Mortality   

The coefficient and standard error are based on the relative risk (1.008738) and 95% 
confidence interval (1.0055-1.0119) associated with a 10 ppb increase in daily average 
ozone (Bell et al., 2005, Table 6).  

G.2.1.3   Huang et al. (2005)   

The authors developed Bayesian hierarchical distributed lag models for estimating 
associations between daily variations in summer ozone levels and daily variations in 
cardiovascular and respiratory (CVDRESP) mortality counts for 19 large U.S. cities 
included in the National Morbidity, Mortality and Air Pollution Study (NMMAPS) for the 
summers of 1987-1994. In the first stage, they defined a semi-parametric distributed 
lag Poisson regression model to estimate city-specific relative rates of CVDRESP 
mortality associated with short-term exposure to summer ozone. In the second stage, 
they specified a class of distributions for the true city-specific relative rates to estimate 
an overall effect by taking into account the variability within and across cities. They 
performed the calculations with respect to several random effects distributions 
(normal, t-student, and mixture of normal), thus relaxing the common assumption of a 
two-stage normal-normal hierarchical model. They assessed the sensitivity of the 
results to: (i) lag structure for ozone exposure; (ii) degree of adjustment for long-term 
trends; (iii) inclusion of other pollutants in the model; (iv) heat waves; (v) random 
effects distributions; and (vi) prior hyperparameters. On average across cities, the 
authors found that a 10 ppb increase in summer ozone level over the previous week is 
associated with a 1.25 per cent increase in CVDRESP mortality (95 per cent posterior 
regions: 0.47, 2.03). The relative rate estimates are also positive and statistically 
significant at lags 0, 1 and 2. They found that associations between summer ozone and 
CVDRESP mortality are sensitive to the confounding adjustment for PM10, but are 
robust to: (i) the adjustment for long-term trends, other gaseous pollutants (NO2, SO2 
and CO); (ii) the distributional assumptions at the second stage of the hierarchical 
model; and (iii) the prior distributions on all unknown parameters.  

Cardiopulmonary Mortality   

Assuming a 10 ppb change in ozone, Huang et al. (2005, Table 1) reported a 1.25% 
change in CVDRESP mortality with a 95% confidence interval of 0.47% to 2.03%.  

Note that Huang et al. (2005, p. 549) define CVDRESP as including ICD-9 codes: 390-
448, 480-487, 490-496, and 507. This differs somewhat from the the definition of 
“cardiopulmonary” mortality in BenMAP -- defined as ICD-9 codes 401-440 and 460-
519.  

G.2.1.4   Ito and Thurston (1996)  

In this study, race, gender, and cause-specific counts of daily mortality in Cook County, 
Illinois (which encompasses the city of Chicago) during 1985-1990 were analyzed to 
determine if there was any heterogeneity in air pollution/weather/mortality 
associations across these various population subcategories. Seasonal cross-correlations 
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between mortality and environmental variables first were examined to identify 
appropriate lag structures. Of the pollution variables considered -- PM10, ozone, CO, SO2, 
and visual range-derived extinction coefficient -- both PM10 and ozone showed 
significant associations with same-day and next-day mortality. The Poisson regression 
models employed included seasonal cycles (sine/cosine series), square and linear terms 
of lagged temperature, trend line, day-of-week dummy variables, and the average of the 
same day’s and previous day’s PM10 or ozone.   

The authors reported a significant relationship for ozone and PM10 with both pollutants 
in the model; no significant effects were found for SO2 and CO. In single pollutant 
models the effects were slightly larger. The health impact function for ozone is based on 
results from the co-pollutant models.   

Non-Accidental Mortality   

For a co-pollutant model with PM10, the ozone coefficient (0.000634) and standard 
error (0.000251) were obtained directly from the author because the published paper 
reported incorrect information.   

G.2.1.5   Ito et al. (2005)  

The authors conducted a review and meta-analysis of short-term ozone mortality 
studies, identified unresolved issues, and conducted an additional time-series analysis 
for 7 U.S. cities (Chicago, Detroit, Houston, Minneapolis-St. Paul, New York City, 
Philadelphia, and St. Louis). They found a combined estimate of 0.39% (95% confidence 
interval = 0.26-0.51%) per 10-ppb increase in 1-hour daily maximum ozone for the all-
age nonaccidental cause/single pollutant model (43 studies). Adjusting for the funnel 
plot asymmetry resulted in a slightly reduced estimate (0.35%; 0.23-0.47%). In a subset 
for which particulate matter (PM) data were available (15 studies), the corresponding 
estimates were 0.40% (0.27-0.53%) for ozone alone and 0.37% (0.20-0.54%) with PM 
in model. The estimates for warm seasons were generally larger than those for cold 
seasons. The additional time-series analysis found that including PM in the model did 
not substantially reduce the ozone risk estimates. However, the difference in the 
weather adjustment model could result in a 2-fold difference in risk estimates (eg, 
0.24% to 0.49% in multicity combined estimates across alternative weather models for 
the ozone-only all-year case). The authors concluded that the results suggest short-term 
associations between ozone and daily mortality in the majority of the cities, although 
the estimates appear to be heterogeneous across cities.  

Non-Accidental Mortality   

Ito et al. (2005) reported results for functions with 1-hour daily maximum, 24-hour 
daily average metrics, and 8-hour maximum from the 24-hour mean. We include the 
warm season 8-hour maximum from the 24-hour mean. Assuming a 20 ppb change in 
the daily 24-hour average, Ito et al. (2005, p. 448) reported a 3.5% change in non-
accidental mortality with a 95% confidence interval of 2.1% to 4.9%.  
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One-hour Max Function   

Assuming a 10 ppb change in the daily 1-hour maximum, Ito et al. (2005, p. 446) 
reported a 0.40% change in non-accidental mortality with a 95% confidence interval of 
0.27% to 0.53%.   

Daily Average Function   

Assuming a 20 ppb change in the daily 24-hour average, Ito et al. (2005, p. 448) 
reported a 3.5% change in non-accidental mortality with a 95% confidence interval of 
2.1% to 4.9%.  

G.2.1.6   Jerrett et al. (2009)   

Jerrett et al. (2009) examined the potential contribution of long-term ozone exposure to 
the risk of death from cardiopulmonary causes and specifically to death from 
respiratory causes. Data from the study cohort of the American Cancer Society Cancer 
Prevention Study II were correlated with air-pollution data from 96 metropolitan 
statistical areas in the United States. Associations between ozone concentrations and 
the risk of death were evaluated with the use of standard and multilevel Cox regression 
models. In single-pollutant models, increased concentrations of either PM2.5 or ozone 
were significantly associated with an increased risk of death from cardiopulmonary 
causes. In two-pollutant models, PM2.5 was associated with the risk of death from 
cardiovascular causes, whereas ozone was associated with the risk of death from 
respiratory causes. The estimated relative risk of death from respiratory causes that 
was associated with an increment in ozone concentration of 10 ppb was 1.040 (95% 
confidence interval, 1.010 to 1.067). The association of ozone with the risk of death 
from respiratory causes was insensitive to adjustment for confounders and to the type 
of statistical model used. The authors concluded that they were not able to detect an 
effect of ozone on the risk of death from cardiovascular causes when the concentration 
of PM2.5 was taken into account. But they did demonstrate a significant increase in the 
risk of death from respiratory causes in association with an increase in ozone 
concentration.  

Mortality, Respiratory (ICD-9 code 460-519) - 86 U.S. urban areas   

In a two-pollutant model the coefficient and standard error are estimated from the 
relative risk (1.040) and 95% confidence interval (95% CI: 1.013-1.067) for a 10 ppb 
increase in ambient ozone concentration measured from April to September during the 
years from 1977 to 2000 in 86 MSAs (Jerrett, et al., 2009, Table 3).   

Mortality, Respiratory (ICD-9 code 460-519) - by region   

In single-pollutant models the coefficient and standard error for different regions are 
estimated from the relative risks and 95% confidence intervals for a 10 ppb increase in 
ambient ozone concentration measured from April to September during the years from 
1977 to 2000 (Jerrett, et al., 2009, Table 4).   
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Mortality, Respiratory (ICD-9 code 460-519) - adjusted daily metric   

Based on the coefficients estimated from the two-pollutant model in the 86 urban areas 
using daily 1-hour max metric, the coefficients were adjusted for daily 8-hour max 
metric using a ratio of 1.14 (Anderson and Bell 2010, Table 2).   

G.2.1.7   Levy et al. (2005)   

The authors conducted an empiric Bayes metaregression to estimate the ozone effect on 
mortality, and to assess whether this effect varies as a function of hypothesized 
confounders or effect modifiers. They gathered 71 time-series studies relating ozone to 
all-cause mortality, and tjey selected 48 estimates from 28 studies for the 
metaregression. Metaregression covariates included the relationship between ozone 
concentrations and concentrations of other air pollutants, proxies for personal 
exposure-ambient concentration relationships, and the statistical methods used in the 
studies. For the metaregression, they applied a hierarchical linear model with known 
level-1 variances. The authors estimated a grand mean of a 0.21% increase (95% 
confidence interval = 0.16-0.26%) in mortality per 10-microg/m increase of 1-hour 
maximum ozone (0.41% increase per 10 ppb) without controlling for other air 
pollutants. In the metaregression, air- conditioning prevalence and lag time were the 
strongest predictors of between-study variability. Air pollution covariates yielded 
inconsistent findings in regression models, although correlation analyses indicated a 
potential influence of summertime PM2.5.   

All-Cause Mortality   

Levy et al. (2005, Table 1) reported a 0.43% change in all-cause mortality with a 95% 
confidence interval of 0.29% to 0.56% associated with a 10 µg/m3 change in ozone. We 
converted µg/m3 to ppb with an assumed relationship of 1.96 µg/m3 per 1.0 ppb. 

G.2.1.8   Moolgavkar et al. (1995)   

Moolgavkar et al. (1995) examined the relationship between daily non-accidental 
mortality and air pollution levels in Philadelphia, Pennsylvania from 1973 to 1988. 
They examined ozone, TSP, and SO2 in a three-pollutant model, and found a significant 
relationship for ozone and SO2; TSP was not significant. In season-specific models, 
ozone was significantly associated with mortality only in the summer months.   

Non-Accidental Mortality 

The health impact function for ozone is based on the full-year three-pollutant model 
reported in Table 5 (Moolgavkar et al., 1995, p. 482). The coefficient and standard error 
are based on the relative risk (1.063) and 95% confidence interval (1.018-1.108) 
associated with a 100 ppb increase in daily average ozone.   

G.2.1.9   Samet et al. (1997)   

Samet et al. (1997) examined the relationship between daily non-accidental mortality 
and air pollution levels in Philadelphia, Pennsylvania from 1974 to 1988. They 
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examined ozone, TSP, SO2, NO2, and CO in a Poisson regression model. In single 
pollutant models, ozone, SO2, TSP, and CO were significantly associated with mortality. 
In a five-pollutant model, they found a positive statistically significant relationship for 
each pollutant except NO2.  

Non-Accidental Mortality 

The health impact function for ozone is based on the five-pollutant model (ozone, CO, 
NO2, SO2 and TSP) reported in Table 9 (Samet et al., 1997, p. 20). The ozone coefficient 
and standard error are based on the percent increase (1.91) and t-statistic (3) 
associated with a 20.219 ppb increase in two-day average ozone.   

G.2.1.10   Schwartz (2005)   

The author used the case-crossover approach, where the control for each person is the 
same person on a day near in time, when he or she did not die. This method controls for 
season and individual risk factors by matching. One can also choose the control day to 
have the same temperature as the event day. The author applied this approach to a 
study of more than 1 million deaths in 14 U.S. cities. He found that, with matching on 
temperature, a 10-ppb increase in maximum hourly ozone concentrations was 
associated with a 0.23% (95% confidence interval [CI] 0.01%, 0.44%) increase in the 
risk of dying. This finding was indistinguishable from the risk when only matching on 
season and controlling for temperature with regression splines (0.19%; 95% CI 03%, 
0.35%). Control for suspended particulate matter with an aerodynamic diameter of 10 
mum or less (PM10) did not change this risk. However, the association was restricted to 
the warm months (0.37% increase; 95% CI 0.11%, 0.62%), with no effect in the cold 
months. The author concluded that the association between ozone and mortality risk is 
unlikely to be caused by confounding by temperature.   

Non-Accidental Mortality   

Assuming a 10 ppb change in the daily 1-hour maximum, Schwartz (2005, Table 2) 
reported a 0.37% change in non-accidental mortality with a 95% confidence interval of 
0.11% to 0.62%. 

G.2.1.11   Smith et al. (2009)   

Smith et al. (2009) analyzed the relationship between daily mortality and ambient 
ozone concentrations through re-examination of evidence using the National Morbidity, 
Mortality, and Air Pollution Study (NMMAPS), which collected daily data on mortality, 
meteorology, and air pollutant concentrations for 100 U.S. cities from 1987-2000. The 
authors examined the sensitivity of city-specific ozone-mortality estimates to treatment 
of meteorology and co-pollutants, dependence on different ozone metrics, use of air 
conditioning, regional and spatial variability, and non-linear exposure-response 
relationships. 
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Non-Accidental Mortality   

Assuming a 10 ppb change in daily 8-hour maximum ozone concentration, Smith et al. 
(2009) reported a 0.40 (0.22)% population-weighted change in non-accidental 
mortality in a model without PM10, and 0.27 (0.22)% population-weighted change in 
non-accidental mortality in a model with PM10. 

G.2.1.12   Zanobetti and Schwartz (2008)  

See full study description under Zanobetti and Schwartz (2008) in Appendix F, Section 
F.1.3. 

Zanobetti and Schwartz (2008) examined the issue of “mortality displacement” (i.e., 
deaths are occurring in frail individuals and exposure is only moving the day of death to 
a day slightly earlier) in 48 U.S. cities during the warm season (i.e., June-August) for the 
years 1989-2000. The authors estimated a series of lagged specifications and found an 
effect size of 0.53% (95%C.I.: 0.28-0.77) for lag 0-3 days for all-cause mortality.  

G.2.2  Hospital Admissions   
Table G-12 summarizes the additional health impact functions used to estimate the 
relationship between ozone and hospital admissions. Below, we present a brief 
summary of each of the studies and any items that are unique to the study.  

Table G-12. Additional Health Impact Functions for Ozone and Hospital Admissions 

Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

All 
Respiratory 

Burnett et al. 2001 Toronto, CAN 0-1 PM2.5 D8HourMax 0.008177 0.002377 Log-
linear 

Warm 
season. 8-
hour max 
from 1-
hour max. 

All 
Respiratory 

Katsouyanni 
et al. 

2009 14 U.S. cities 65-99  D8HourMax 0.000637 0.000400 Log-
linear 

Summer, 
penalized 
splines, 
8df 

All 
Respiratory 

Katsouyanni 
et al. 

2009 14 U.S. cities 65-99  D8HourMax 0.000614 0.000406 Log-
linear 

Summer, 
natural 
splines, 
8df 

Chronic Lung Moolgavkar 
et al. 

1997 Minneapolis, 
MN 

65-99 PM10, 
CO 

D24HourMean 0.002800 0.001769 Log-
linear 

 

Chronic Lung Moolgavkar 
et al. 

1997 Minneapolis, 
MN 

65-99 PM10, 
CO 

D8HourMax 0.001960 0.001238 Log-
linear 

All year. 8-
hour max 
from 24-
hour mean 

Pneumonia Moolgavkar 
et al 

1997 Minneapolis, 
MN 

65-99 PM10, 
SO2, 
NO2 

D24HourMean 0.003800 0.001088 Log-
linear 

 

Pneumonia Moolgavkar 
et al. 

1997 Minneapolis, 
MN 

65-99 PM10, 
SO2, 
NO2 

D8HourMax 0.002660 0.000762 Log-
linear 

All year. 8-
hour max 
from 24-
hour mean 
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Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

Chronic Lung 
(less Asthma) 

Schwartz 1994 Detroit, MI 65-99 PM10 D24HourMean 0.005523 0.002085 Log-
linear 

All year 

Chronic Lung 
(less Asthma) 

Schwartz 1994 Detroit, MI 65-99 PM10 D8HourMax 0.003424 0.001293 Log-
linear 

All year. 8-
hour max 
from 24-
hour 
mean. 

Pneumonia Schwartz 1994 Detroit, MI 65-99 PM10 D24HourMean 0.005210 0.001300 Log-
linear 

All year. 

Pneumonia Schwartz 1994 Minneapolis, 
MN 

65-99 PM10 D24HourMean 0.003977 0.001865 Log-
linear 

All year. 

Pneumonia Schwartz 1994 Detroit, MI 65-99 PM10 D8HourMax 0.003230 0.000806 Log-
linear 

All year. 8-
hour max 
from 24-
hour mean 

Pneumonia Schwartz 1994 Minneapolis, 
MN 

65-99 PM10 D8HourMax 0.002784 0.001305 Log-
linear 

All year. 8-
hour max 
from 24-
hour 
mean. 

All 
Respiratory 

Schwartz 1995 New Haven, CT 65-99 PM10 D24HourMean 0.002652 0.001398 Log-
linear 

Warm 
season 

All 
Respiratory 

Schwartz 1995 Tacoma, WA 65-99 PM10 D24HourMean 0.007147 0.002565 Log-
linear 

Warm 
season 

All 
Respiratory 

Schwartz 1995 New Haven, CT 65-99 PM10 D8HourMax 0.001777 0.000936 Log-
linear 

Warm 
season. 8-
hour max 
from 24-
hour mean 

All 
Respiratory 

Schwartz 1995 Tacoma, WA 65-99 PM10 D8HourMax 0.004931 0.001770 Log-
linear 

Warm 
season. 8-
hour max 
from 24-
hour mean 

 

G.2.2.1   Burnett et al. (2001)  

Burnett et al. (2001) studied the association between air pollution and acute 
respiratory hospital admissions (ICD codes 493, 466, 464.4, 480-486) in Toronto from 
1980-1994, among children less than 2 years of age. They collected hourly 
concentrations of the gaseous pollutants, CO, NO2, SO2, and ozone. Daily measures of 
particulate matter were estimated for the May to August period of 1992-1994 using 
TSP, sulfates, and coefficient of haze data. The authors report a positive association 
between ozone in the May through August months and respiratory hospital admissions, 
for several single days after elevated ozone levels.   
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The strongest association was found using a five-day moving average of ozone. No 
association was found in the September through April months. In co-pollutant models 
with a particulate matter or another gaseous pollutant, the ozone effect was only 
slightly diminished. The effects for PM and gaseous pollutants were generally 
significant in single pollutant models but diminished in co-pollutant models with ozone, 
with the exception of CO. The C-R functions for ozone are based on a single pollutant 
and two co-pollutant models, using the five-day moving average of one-hour max ozone.   

Hospital Admissions, All Respiratory (ICD-9 codes 464, 466, 480-487, 493)   

In a model with PM2.5, the coefficient and standard error are based on the percent 
increase (33.0) and t-statistic (3.44) associated with a 45.2 ppb increase in the five-day 
moving average of one-hour max ozone (Burnett et al., 2001, Table 3).  

G.2.2.2   Katsouyanni et al. (2009)  

Katsouyanni et al. (2009) assessed the relationship between air pollution and hospital 
admissions from 1985 to 1994. Specifically, the authors examined hospitalizations due 
to respiratory diseases, conditions, or infections (ICD-9 codes 460-519) among U.S. 
citizens age 65 or older. The U.S. dataset included 14 cities with each city having data 
for 4 to 10 years from 1985-1994 and 7 cities having only summer ozone data. The 
investigators used a three-stage hierarchical model to account for within-city, within 
region, and between region variability. In the U.S. in adults 65 and older, authors found 
a .26% (.01, .51) increase in respiratory hospital admissions with 10 µg/m3 increase in 
ozone concentration using penalized splines with 8 df/year using lag 1. Authors found a 
.33% (.08, .58) increase in respiratory hospital admissions with 10 µg/m3 increase in 
ozone concentration using natural splines with 8 df/year using distributed lags.  

G.2.2.3   Moolgavkar et al. (1997)  

Moolgavkar et al. (1997) examined the relationship between air pollution and hospital 
admissions (ICD-9 codes 490-496) for individuals 65 and older in Minneapolis-St. Paul, 
Minnesota, from January 1986 to December 1991. In a Poisson regression, they found 
no significant effect for any of the pollutants (PM10, ozone, or CO). The effect for ozone 
was marginally significant. The model with a 100 df smoother was reported to be 
optimal (p. 368). The health impact function for chronic lung disease is based on the 
results from a three-pollutant model (ozone, CO, PM10) using the 100 df smoother; the 
function for Pneumonia uses the 130 df smoother.   

Hospital Admissions, Chronic Lung Disease (ICD-9 codes 490-496)   

In a model with CO and PM10, the estimated coefficient and standard error are based on 
the percent increase (4.2) and 95% confidence interval of the percent increase (-1.0-
9.4) associated with a change in daily average ozone levels of 15 ppb (Moolgavkar et al., 
1997, Table 4).   
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Hospital Admissions, Pneumonia (ICD-9 codes 480-487)   

In a model with NO2, PM10, and SO2, the estimated coefficient and standard error are 
based on the percent increase (5.7) and 95% confidence interval of the percent increase 
(2.5-8.9) associated with an increase in daily average ozone levels of 15 ppb 
(Moolgavkar et al., 1997, Table 4).  

G.2.2.4   Schwartz (1994a)  

Schwartz (1994a) examined the relationship between air pollution and hospital 
admissions for individuals 65 and older in Minneapolis-St. Paul, Minnesota, from 
January 1986 to December 1989. In single-pollutant Poisson regression models, both 
ozone and PM10 were significantly associated with pneumonia admissions. In a two-
pollutant model, Schwartz found PM10 significantly related to pneumonia; ozone was 
weakly linked to pneumonia. The results were not sensitive to the methods used to 
control for seasonal patterns and weather. The ozone C-R functions are based on the 
results of the single pollutant model and the two-pollutant model (PM10 and ozone) 
with spline smoothing for temporal patterns and weather.  

Hospital Admissions, Pneumonia (ICD-9 codes 480-487)   

In a model with PM10 and spline functions to adjust for time and weather, the coefficient 
and standard error are based on the relative risk (1.22) and 95% confidence interval 
(1.02, 1.47) for a 50 ppb increase in daily average ozone levels (Schwartz, 1994a, 
Table 4).  

G.2.2.5   Schwartz (1994b)  

Schwartz (1994b) examined the relationship between air pollution and hospital 
admissions (ICD codes 491-492, 494-496) for individuals 65 and older in Detroit, 
Michigan, from January 1986 to December 1989. In a two-pollutant Poisson regression 
model, Schwartz found both PM10 and ozone significantly linked to pneumonia and 
COPD. The authors state that effect estimates were relatively unchanged compared to 
the unreported single pollutant models. No significant associations were found between 
either pollutant and asthma admissions. The C-R function for chronic lung disease 
incidence is based on the results of the “basic” co-pollutant model (ozone and PM10) 
presented in Table 4 (p. 651). The study also reports results using generalized additive 
models to fit time and temperature variables, however no standard error or confidence 
intervals were reported.   

Hospital Admissions, Chronic Lung Disease less Asthma (ICD-9 codes 490-492, 494-
496)   

The coefficient and standard error for the “basic” model are reported in Table 4 
(Schwartz, 1994b, p.651) for a one ppb change in daily average ozone.   
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Hospital Admissions, Pneumonia (ICD-9 codes 480-487)   

The ozone C-R function for pneumonia incidence is based on the coefficient and 
standard error for the “basic” co-pollutant model presented in Table 4 (Schwartz, 
1994b, p. 651).  

G.2.2.6   Schwartz (1995)  

Studies have reported associations between short term changes in air pollution and 
respiratory hospital admissions. This relationship was examined in two cities with 
substantially different levels of sulphur dioxide (SO2) but similar levels of airborne 
particles in an attempt to separate the effects of the two pollutants. Significant 
differences in weather between the two cities allowed the evaluation of that potential 
confounder also. Daily counts of admissions to all hospitals for respiratory disease (ICD 
9 460-519) were constructed for persons aged 65 years and older in two cities - New 
Haven, Connecticut and Tacoma, Washington.   

Each city was analysed separately. Average daily concentrations of SO2, inhalable 
particles (PM10), and ozone were computed from all monitors in each city, and daily 
average temperature and humidity were obtained from the US weather service. Daily 
respiratory admission counts were regressed on temperature, humidity, day of the 
week indicators, and air pollution. A 19-day weighted moving regression filter was used 
to remove all seasonal and subseasonal patterns from the data. Possible U- shaped 
dependence of admissions on temperature was dealt with using indicator variables for 
eight categories each of temperature and humidity.  Each pollutant was first examined 
individually and then multiple pollutant models were fitted. All three pollutants were 
associated with respiratory hospital admissions of the elderly. The PM10 associations 
were little changed by control for either ozone or SO2. The ozone association was 
likewise independent of the other pollutants. The SO2 association was substantially 
attenuated by control for ozone in both cities, and by control for PM10 in Tacoma. The 
magnitude of the effect was small (relative risk 1.06 in New Haven and 1.10 in Tacoma 
for a 50 micrograms/m3 increase in PM10, for example) but, given the ubiquitous 
exposure, this has some public health significance. The authors concluded that air 
pollution concentrations within current guidelines were associated with increased 
respiratory hospital admissions of the elderly. The strongest evidence for an 
independent association was for PM10, followed by ozone.  

Hospital Admissions, All Respiratory (ICD-9 codes 460-519) -- Tacoma   

In a model with PM10, the coefficient and standard error are estimated from the relative 
risk (1.20) and 95% confidence interval (1.06-1.37) for a 50 µg/m3 increase in average 
daily ozone levels (Schwartz, 1995, Table 6, p. 535). To calculate the coefficient, a 
conversion of 1.96 µg/m3 per ppb was used, based on a density of ozone of 1.96 grams 
per liter (at 25 degrees Celsius).   
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Hospital Admissions, All Respiratory (ICD-9 codes 460-519) -- New Haven   

In a model with PM10, the coefficient and standard error are estimated from the relative 
risk (1.07) and 95% confidence interval (1.00-1.15) for a 50 µg/m3 increase in average 
daily ozone levels (Schwartz, 1995, Table 3, p. 534). To calculate the coefficient, a 
conversion of 1.96 µg/m3 per ppb was used, based on a density of ozone of 1.96 grams 
per liter (at 25 degrees Celsius).   

G.2.3  Emergency Room Visits   
Table G-13 summarizes the additional health impacts functions used to estimate the 
relationship between ozone and emergency room (ER) visits. Below, we present a brief 
summary of each of the studies and any items that are unique to the study.  

Table G-13. Additional Health Impact Functions for Ozone and Emergency Room 
Visits  

Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form 

Asthma Glad et al. 2012 Pittsburgh, PA 0-99  D8HourMax 0.003057 0.0011709 Logistic 

Asthma Ito et al.  2007 New York, NY 0-99  D8HourMax 0.005213 0.000909 Log-linear 

Asthma Ito et al.  2007 New York, NY 0-99 PM2.5 D8HourMax 0.003976 0.000979 Log-linear 

Asthma Mar and 
Koenig 

2009 Seattle, WA 18-
99 

 D8HourMax 0.007696 0.0028374 Log-linear 

Asthma Mar and 
Koenig 

2009 Seattle, WA 0-17  D8HourMax 0.010436 0.0043576 Log-linear 

Asthma Peel et al. 2005 Atlanta, GA 0-99  D8HourMax 0.000870 0.000529 Log-linear 

Asthma Sarnat et al. 2013 Atlanta, GA 0-99  D8HourMax 0.001113 0.0002828 Log-linear 

Asthma Wilson et al. 2005 Portland, ME 0.99  D8HourMax 0.003000 0.001000 Log-linear 

Asthma Wilson et al. 2005 Manchester, 
NH 

0-99  D8HourMax -0.001000 0.002000 Log-linear 

 

G.2.3.1   Glad et al. (2012)    

Glad et al. (2012) is summarized in section G.1.4.1.  

Emergency Room Visits, Asthma 

Using a case-crossover methodology, which controls for the effects of subject-specific 
covariates such as gender and race, a 2.5% increase was observed in asthma ED visits 
for each 10 ppb increase in the 1-hour maximum ozone level on day 2 (odds ratio [OR] 
= 1.025, p <0.05). 

G.2.3.2   Ito et al. (2007)   

The authors assessed the effect of multi-collinearity among gaseous co-pollutants of 
PM2.5 and weather variables. The authors compiled daily meteorological and pollutant 
data in New York City for the years 1999 to 2002 and analyzed the effect of ozone on 
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asthma emergency department visits for all year, warm months and cold months (all 
excluding September and October due to fall peaks in asthma emergency department 
visits). Data on ED visits were obtained from the 11 New York City Health and Hospitals 
Corporation medical centers with emergency receiving facilities. 

G.2.3.3   Mar and Koenig (2009)   

Mar and Koenig (2009) evaluated the relationship between outdoor ozone in the 
summer and asthma aggravation. The authors used hospital data on daily asthma cases 
from 1998 to 2002 in Seattle with local monitored PM2.5 and ozone concentrations to 
assess the association between asthma visits to the emergency department and air 
pollutants. They analyzed 1-hour and 8-hour max ozone concentrations at 2 monitors in 
Greater Seattle. Asthma ED visits were analyzed at 0 through 5-day lags. The authors 
found that ozone exposure exacerbates asthma in people in the Seattle area, especially 
in children. Authors found that in adults during the warmer months between May and 
September, a 10 ppb increase in 8-hour maximum ozone concentration is associated 
with relative risk of asthma-related ED visits of 1.08 (1.02, 1.14) with a 4-day lag. In 
children, during the warmer months, a 10 ppb increase in 8-hour maximum ozone 
concentration is associated with relative risk of asthma-related ED visits of 1.11 (1.02, 
1.21) with a 3-day lag. The difference in lag and relative risk between children and 
adults suggests that children are more immediately responsive to the adverse effects of 
ozone exposure.  

G.2.3.4   Peel et al. (2005)   

A number of emergency department studies have corroborated findings from mortality 
and hospital admission studies regarding an association of ambient air pollution and 
respiratory outcomes. More refined assessment has been limited by study size and 
available air quality data. Measurements of 5 pollutants: PM10, ozone, NO2, CO, and SO2 
were available for the entire study period (1 January 1993 to 31 August 2000); detailed 
measurements of particulate matter were available for 25 months. The authors 
obtained data on 4 million emergency department visits from 31 hospitals in Atlanta. 
Visits for asthma, chronic obstructive pulmonary disease, upper respiratory infection, 
and pneumonia were assessed in relation to air pollutants using Poisson generalized 
estimating equations. In single-pollutant models examining 3-day moving averages of 
pollutants (lags 0, 1, and 2): standard deviation increases of ozone, NO2, CO, and PM10 
were associated with 1-3% increases in URI visits; a 2 microg/m increase of PM2.5 
organic carbon was associated with a 3% increase in pneumonia visits; and standard 
deviation increases of NO2 and CO were associated with 2-3% increases in chronic 
obstructive pulmonary disease visits. Positive associations persisted beyond 3 days for 
several of the outcomes, and over a week for asthma. The results of this study 
contribute to the evidence of an association of several correlated gaseous and 
particulate pollutants, including ozone, NO2, CO, PM, and organic carbon, with specific 
respiratory conditions.   
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Emergency Room Visits, Asthma 

The ozone coefficient and standard error are reported per 25 ppb increment of the 
maximum daily 8-hour average ozone level (Peel et al., 2003, Table 4). We used the 
results from the three cities combined. The relative risk is 1.022, with a 95 percent 
confidence interval of 0.996 to 1.049.  

G.2.3.5   Sarnat et al. (2013)   

The authors examined the influence of indoor air exchange rates as an effect modifier of 
associations between air pollutants and emergency department visits for asthma.  The 
study analyzed associations between urban air pollutants (CO, NOx, O3, and PM2.5) and 
asthma ED visits (ICD-9 codes 493 and 786.07) over a four-year period between 1999 
and 2002 for residents of186 zip codes in metropolitan Atlanta.  A spatial surface of 
daily ambient air concentrations of pollutants was generated using AERMOD air quality 
modeling of 2002 NEI emissions combined with spatially interpolated background 
concentrations.  AER was estimated at the zip code level based on an empirical model of 
direct and indirect predictors of AER collected from field surveys of building and 
meteorological characteristics.  Effects of air pollution on asthma ED visits were 
estimated using a spatially resolved time series approach with Poisson generalized 
linear models, including stratified analyses for low or high AER areas.  The authors 
found significant or near-significant positive effect modification of AER on the asthma 
ED visit effects of CO, NOx, and PM2.5.  Ozone was a strong predictor of asthma ED visits 
but appeared unaffected by the AER.   Overall, the study provides the first indication of 
short-term effect modification of air pollution risks with changes in AER. The HIF in 
BenMAP-CE is based on the association between ozone exposures and asthma ED visits 
for all AERs and all poverty levels (RR = 1.050, 95%CI 1.024-1.075) for a 26 ppb change 
in daily average ozone (3-day moving average of 0,1, and 2 day lags).  The beta value 
was adjusted to use the daily 8-hour max metric as described below. 

G.2.3.6   Wilson et al. (2005)   

Daily emergency room (ER) visits for all respiratory (ICD-9 460-519) and asthma (ICD-
9 493) were compared with daily SO2, ozone, and weather variables over the period 
1998-2000 in Portland, Maine (population 248,000), and 1996-2000 in Manchester, 
New Hampshire (population 176,000). Seasonal variability was removed from all 
variables using nonparametric smoothed function (LOESS) of day of study. Generalized 
additive models were used to estimate the effect of elevated levels of pollutants on ER 
visits. Relative risks of pollutants were reported over their interquartile range (IQR, the 
75th -25th percentile pollutant values). I n Portland, an IQR increase in SO2 was 
associated with a 5% (95% CI 2-7%) increase in all respiratory ER visits and a 6% 
(95% CI 1-12%) increase in asthma visits. An IQR increase in O3 was associated with a 
5% (95% CI 1-10%) increase in Portland asthmatic ER visits. No significant associations 
were found in Manchester, New Hampshire, possibly due to statistical limitations of 
analyzing a smaller population. The absence of statistical evidence for a relationship 
should not be used as evidence of no relationship. This analysis reveals that, on a daily 
basis, elevated SO2 and O3 have a significant impact on public health in Portland, Maine.  
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Emergency Room Visits, Asthma  

The coefficient and standard error are taken from Wilson et al. (2005, Table 5). 

G.2.4 Minor Effects 
Table G-14 summarizes the additional health impacts functions used to estimate the 
relationship between ozone and minor effects. Below, we present a brief summary of 
each of the studies and any items that are unique to the study. 

Table G-14. Additional Health Impact Functions for Ozone and Minor Effects 

Effect Author Year Location Age Co-Poll Metric Beta Std Err Form Notes 

School Loss 
Days, All 
Cause 

Chen et al. 2000 Washoe Co, 
NV 

5-17 PM10, CO D8HourMax 0.015763 0.004985 Linear All year, 
8-hour 
max from 
1-hour 
max. 

School Loss 
Days, All 
Cause 

Chen et al. 2000 Washoe Co, 
NV 

5-17 PM10, CO D1HourMax 0.013247 0.004985 Linear  

School Loss 
Days, All 
Cause 

Gilliland et 
al. 

2001 Southern 
California 

5-17  D8HourMax 0.007824 0.004445 Log-
linear 

All year, 
8-hour 
max from 
8-hour 
mean. 

Minor 
Restricted 
Activity Days 

Ostro and 
Rothschild 

1989 Nationwide 18-64 PM2.5 D8HourMax 0.002596 0.000776 Log-
linear 

8-hour 
max from 
1-hour 
max. 

Minor 
Restricted 
Activity Days 

Ostro and 
Rothschild 

1989 Nationwide 18-64 PM2.5 D1HourMax 0.002200 0.000658 Log-
linear 

 

 
G.2.4.1   Chen et al. (2000) 

Chen et al. (2000) studied the association between air pollution and elementary school 
absenteeism (grades 1-6) in Washoe County, Nevada. Assuming that most children start 
kindergarten at age 5, the corresponding ages for grades 1 through 6 would be 6 
through 11. Daily absence data were available for all elementary schools in the Washoe 
County School District. The authors regressed daily total absence rate on the three air 
pollutants, meteorological variables, and indicators for day of the week, month, and 
holidays. They reported statistically significant associations between both ozone and 
CO and daily total absence rate for grades one through six. PM10 was negatively 
associated with absence rate, after adjustment for ozone, CO, and meteorological and 
temporal variables. The C-R function for ozone is based on the results from a multiple 
linear regression model with CO, ozone, and PM10. 
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School Loss Days, All Cause  

The coefficient and standard error are presented in Table 3 (Chen et al., 2000, p. 1008) 
for a unit ppm increase in the two-week average of daily one-hour maximum ozone 
concentration. This is converted to unit ppb increase by dividing by 1,000. The reported 
coefficient represents an absolute increase in absenteeism rate for a unit increase in 
ozone. If we apply this study to other locations, we assume that the same absolute 
increase will occur for a unit increase in ozone, regardless of the baseline rate. If the 
study location has a particularly high baseline rate, we may be overestimating 
decreases in absenteeism nationally, and vice-versa. As an example, consider if the 
baseline absenteeism rate were 10% in the study and 5% nationally. An absolute 
increase in absence rate of 2% associated with a given increase in ozone reflects a 
relative increase in absence rate of 20% for the study population. However, in the 
national estimate, we would assume the same absolute increase of 2%, but this would 
reflect a relative increase in the absenteeism rate of 40%.  

An alternative approach is to estimate apply the relative increase in absenteeism rate in 
the C-R function by adjusting the results by the ratio of the national absenteeism rate to 
the study-specific rate. As a result, the percent increase in absenteeism rate associated 
with an increase in ozone is extrapolated nationally rather than the absolute increase in 
absenteeism rate. The incidence derivation section above describes the data used to 
estimate national and study-specific absence rates.  

In addition to this scaling factor, there are two other scaling factors which are applied 
to the function. A scaling factor of 0.01 is used to convert the beta from a percentage (x 
100) per unit increase of ozone to a proportion per unit increase of ozone. As a result it 
can be applied directly to the national population of school children ages 6 through 11 
to estimate the number of absences avoided.  

The final scaling factor adjusts for the number of school days in the ozone season. In the 
modeling program, the function is applied to every day in the ozone season (May 1 - 
September 30), however, in reality, school absences will be avoided only on school 
days. We assume that children are in school during weekdays for all of May, two weeks 
in June, one week in August, and all of September. This corresponds to approximately 
2.75 months out of the 5 month season, resulting in an estimate of 39.3% of days 
(2.75/5*5/7). The C-R function parameters are shown below. 

Population: population of children ages 6-11  

Scaling Factor 1: Ratio of national school absence rate to study-specific school absence 
rate = 1.081. (National school absence rate of 5.5% obtained from the U.S. Department 
of Education (1996, Table 42-1). Study-specific school absence rate of 5.09% obtained 
from Chen et al. (2000, Table 1).)  

Scaling Factor 2: Convert beta in percentage terms to a proportion = 0.01  
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Scaling Factor 3: Proportion of days that are school days in the ozone season = 0.393. 
(Ozone is modeled for the 5 months from May 1 through September 30. We assume that 
children are in school during weekdays for all of May, 2 weeks in June, 1 week in 
August, and all of September. This corresponds to approximately 2.75 months out of the 
5 month season, resulting in an estimate of 39.3% of days (2.75/5*5/7).) 

G.2.4.2   Gilliland et al. (2001) 

See full study description under Gilliland et al. (2001) in Appendix F, Section F.4.1. 

G.2.4.3   Ostro and Rothschild (1989) 

See full study description under Ostro and Rothschild (1989) in Appendix F, Section 
F.4.2. 

G.2.5 Asthma-Related Effects   
Table G-15 summarizes the additional health impacts functions used to estimate the 
relationship between ozone and asthma exacerbation. Below, we present a brief 
summary of each of the studies and any items that are unique to the study. Based on 
advice from the SAB-HES (U.S. EPA-SAB 2004), regardless of the age ranges included in 
the source epidemiology studies, we extend the applied population to ages 6 to 18, 
reflecting the common biological basis for the effect in children in the broader age 
group. 

Table G-15. Additional Health Impact Functions for Ozone and Asthma-Related 
Effects 

Effect Author Year Location Age Co-Poll Metric Beta Std Err Form Notes 

Asthma 
Exacerbation, 
One or More 
Symptoms 

Mortimer et 
al. 

2002 Eight U.S. 
urban areas 

6-18  D8HourMax 0.009288 0.00387 Logistic Uses 
incidence 
rate of 
0.116 

Asthma 
Exacerbation, 
One or More 
Symptoms 

O’Connor et 
al.  

2008 Seven U.S. 
urban 
communities 

6-18 PM2.5, 
NO2 

D8HourMax 0.0009661 0.002991 Log-
linear 

Uses 
incidence 
rate of 
0.207 

Asthma 
Exacerbation, 
One or More 
Symptoms 

Schildcrout 
et al.  

2006 Eight U.S. 
urban areas 

6-18  D8HourMax 0.00222 0.002822 

 
Logistic Uses 

incidence 
rate of 
0.52 

 

G.2.5.1   Mortimer et al. (2002)   

Mortimer et al. (2002) examined the effects of daily levels of PM10, SO2, NO2 and ozone 
on peak expiratory flow rate and asthma symptoms among 846 asthmatic children aged 
four to nine living in eight urban areas in the Northeast and Midwest.  Exposures were 
estimated using EPA’s AIRS database and averaging pollutant concentrations at all 
monitors in each subject’s county.  Effects were analyzed using mixed linear models and 
generalized estimating equation models. The authors found an association in single-
pollutant models between each pollutant and self-reported morning asthma symptoms.  
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The health impact function in BenMAP is based on the odds ratio for a 15 ppb increase 
in 4-day average 8-hour mean ozone between June and August (OR=1.16, 95%CI 1.02-
1.30), adjusted to 8-hour max exposure metric as described below.  

G.2.5.2   O’Connor et al. (2008)   

O’Connor et al. (2008) studied the association between asthma symptoms and daily 
outdoor air pollutant concentrations (NO2, SO2, CO, ozone, and PM2.5) among 937 
asthmatic children aged five to 12 in seven inner-city areas in the U.S. Exposure data 
were estimated from monitor data from EPA’s AIRS database for the years 1998 to 
2001. Outcome data were collected via telephone interview every two weeks.  The 
effect of pollutant levels on frequency of asthma symptoms was assessed using 
generalized estimating equation models.  The health impact function in BenMAP is 
based on the relative risk for a 26.7 ppb increase in 19-day average 8-hour mean ozone 
between June and August (OR=1.04, 95%CI 0.82-1.32), adjusted to the 8-hour max 
exposure metric as described below. 

Incidence Rate: Daily incidence rate for days with wheeze, tightness in chest, cough 
21% (Table 1).  

G.2.5.3   Schildcrout et al. (2006)   

Schildcrout et al. (2006) investigated the relation between ambient concentrations of 
the five criteria pollutants (PM10, O3, NO2, SO2, and CO) and asthma exacerbations (daily 
symptoms and use of rescue inhalers) among 990 children in eight North American 
cities during the 22-month prerandomization phase (November 1993-September 1995) 
of the Childhood Asthma Management Program. Short-term effects of CO, NO2, PM10, 
SO2, and warm-season O3 were examined in both one-pollutant and two-pollutant 
models, using lags of up to 2 days in logistic and Poisson regressions. When modeling 
ozone, the authors limited the study period to warm months (May through September).  

Asthma Excerbation, One or More Symptoms  

In a single-pollutant model, Schildcrout et al. (2006, Figure 1) reported an odds ratio of 
1.06 (95% CI: 0.92, 1.23) for daily asthma symptoms associated with 30 ppb change in 
24-hr mean of ozone at lag 0.  

Incidence Rate: Daily incidence rate for one or more symptoms (symptom score>0) = 
52% (Schildcrout, et al., 2006, Table 1). 

G.2.6 Converting Functions to 8-Hour Daily Maximum Metric 
A number of health impact functions were converted from 1-hour maximum and 24-
hour average to the 8-hour maximum metric. To convert, say, a 1-hour maximum function, we 
multiplied the 1-hour maximum coefficient with the ratio of the typical 1-hour maximum value 
to the typical 8-hour maximum value from Anderson and Bell (2010), Table 2. We 
approximated 8-hour average metric as equivalent to the 8-hour maximum metric due 
to high correlation between the two metrics. 
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Appendix H. Core Health Valuation Functions in U.S. Setup  

This appendix presents the core unit values that are available in BenMAP for each of the 
health endpoints included in the current suite of health impact functions. Specifically, 
this appendix includes the values currently used by U.S. EPA in regulatory impact 
analyses. For the .apvx files summarizing current EPA practices, see: 

https://www.epa.gov/benmap/benmap-community-edition 

Wherever possible, we present a distribution of the unit value, characterizing the 
uncertainty surrounding any point estimate. The mean of the distribution is taken as 
the point estimate of the unit value, and the distribution itself is used to characterize 
the uncertainty surrounding the unit value, which feeds into the uncertainty 
surrounding the monetary benefits associated with reducing the incidence of the health 
endpoint. Below we give detailed descriptions of the derivations of unit values and their 
distributions, as well as tables listing the unit values and their distributions, available 
for each health endpoint. The definitions of the distributions and their parameters are 
given in Table H-1. 

Table H-1. Unit Value Uncertainty Distributions and Their Parameters 

Distribution* Parameter 1 (P1) Parameter 2 (P2) 
Normal Standard deviation – 
Triangular Minimum value Maximum value 
Lognormal ** Mean of corresponding normal 

distribution 
Standard deviation of 
corresponding normal 
distribution 

Uniform Minimum value Maximum value 
Weibull *** α β 
*In all cases, BenMAP calculates the mean of the distribution, which is used as the “point estimate” of the unit value. 
** If Y is a normal random variable, and Y = logeX, then X is lognormally distributed. Equivalently, X is lognormally 
distributed if X = eY, where Y is normally distributed. 
*** The Weibull distribution has the following probability density function: 

 

This appendix also presents EPA methods for developing income growth adjustment 
factors that allow BenMAP-CE users to adjust the WTP estimates to account for the 
growth in income over time. 

H.1 Mortality 
The economics literature concerning the appropriate method for valuing reductions in 
premature mortality risk is still developing. The adoption of a value for the projected 
reduction in the risk of premature mortality is the subject of continuing discussion 
within the economics and public policy analysis communities. Issues such as the 
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appropriate discount rate and whether there are factors, such as age or the quality of 
life, that should be taken into consideration when estimating the value of avoided 
premature mortality are still under discussion. BenMAP currently offers a variety of 
options reflecting the uncertainty surrounding the unit value for premature mortality. 

H.1.1 Value of a Statistical Life Based on 26 Studies 

The current undiscounted VSL used by EPA is $8.7 million (2015$). This estimate is the 
mean of a distribution fitted to 26 “value of statistical life” (VSL) estimates that appear 
in the economics literature and that have been identified in the Section 812 Reports to 
Congress as “applicable to policy analysis.” This represents an intermediate value from 
a variety of estimates, and it is a value EPA has frequently used in Regulatory Impact 
Analyses (RIAs) as well as in the Section 812 Retrospective and Prospective Analyses of 
the Clean Air Act. Accounting for the cessation lag, or the delay between pollutant 
exposure and death, this VSL equates to $7.8 million (2015$) using a 3% discount rate 
and $7.1 million (2015$) using a 7% discount rate (U.S. EPA, 2014). 

The VSL approach mirrors that of Viscusi (1992), and uses the same criteria as Viscusi 
in his review of value-of-life studies. The $8.7 million estimate is consistent with 
Viscusi’s conclusion (updated to 2015$) that “most of the reasonable estimates of the 
value of life are clustered in the $5.2 to $12.3 million range.” Five of the 26 studies are 
contingent valuation (CV) studies, which directly solicit WTP information from subjects; 
the rest are wage-risk studies, which base WTP estimates on estimates of the additional 
compensation demanded in the labor market for riskier jobs. Because this VSL-based 
unit value does not distinguish among people based on the age at their death or the 
quality of their lives, it can be applied to all premature deaths. Table H-2 presents the 
unit values for the 26 value-of-life studies, the 3% and 7% discounted unit values 
represent the core EPA values for this endpoint while the undiscounted rate represents 
an additional valuation function. 

Table H-2. Core Unit Values for VSL based on 26-value-of-life studies  

Basis for Estimate * 

Age Range at 
Death 

Unit Value 
(VSL) 

(2015$) 

Distribution of 
Unit Value 

Parameters of Distribution 
Min Max P1 P2 

VSL, based on 26 value-of-
life studies 

0 99 8,705,114 Weibull 9,648,168 1.509588 

VSL, based on 26 value-of-
life studies, 3% discount 
rate 

0 99 7,887,356 Weibull 8,741,819 1.367777 

VSL, based on 26 value-of-
life studies, 7% discount 
rate 

0 99 7,103,778 Weibull 7,873,354 1.231894 

* The original value of a statistical life was calculated in 1990$.  We have used a factor of 1.8134, based on 
the All-Items CPI-U. 
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H.2 Hospital Admissions & Emergency Room Visits 
This section presents the core values for avoided hospital admissions, as well as 
avoided emergency room visits. We assume that hospital admissions due to acute 
exposure to air pollution pass through the emergency room. However, the value of 
hospital admissions that we have calculated here does not account for the cost incurred 
in the emergency room visit.  

H.2.1 Hospital Admissions  

As suggested above, the total value to society of an individual’s avoidance of a hospital 
admission can be thought of as having two components: (1) the cost of illness (COI) to 
society, including the total medical costs plus the value of the lost productivity, as well 
as (2) the WTP of the individual, as well as that of others, to avoid the pain and suffering 
resulting from the illness.  

In the absence of estimates of social WTP to avoid hospital admissions for specific 
illnesses (components 1 plus 2 above), estimates of total COI (component 1) are 
available for use in BenMAP as conservative (lower bound) estimates. Because these 
estimates do not include the value of avoiding the pain and suffering resulting from the 
illness (component 2), they are biased downward. Some analyses adjust COI estimates 
upward by multiplying by an estimate of the ratio of WTP to COI, to better approximate 
total WTP. Other analyses have avoided making this adjustment because of the 
possibility of over-adjusting -- that is, possibly replacing a known downward bias with 
an upward bias. Based on Science Advisory Board (SAB) advice, the COI values 
currently available for use in BenMAP are not adjusted.  

Unit values are based on ICD-code-specific estimated hospital charges and opportunity 
cost of time spent in the hospital (based on the average length of a hospital stay for the 
illness). The opportunity cost of a day spent in the hospital is estimated as the value of 
the lost daily wage, regardless of whether or not the individual is in the workforce.  

For all hospital admissions endpoints available in BenMAP, estimates of hospital 
charges and lengths of hospital stays were based on discharge statistics provided by the 
Agency for Healthcare Research and Quality’s Healthcare Utilization Project National 
Inpatient Sample (NIS) database (2016). The NIS is the largest inpatient care database 
in the United States, and it is the only national hospital database containing charge 
information on all patients. It contains data from a very large nationally representative 
sample of about eight million hospital discharges, and therefore provides the best 
estimates of mean hospital charges and mean lengths of stay available, with negligible 
standard errors. The sampling frame for the 2016 NIS is a sample of hospitals that 
comprises approximately 90 percent of all hospital discharges in the United States. 
Since the NIS is based on discharge samples, the discharge-level weight was used to 
weight discharges in order to produce national estimates. The principle diagnoses were 
used to define the health endpoints.  
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Since most pollution-related hospital admissions are likely unscheduled, the unit values 
of avoided hospital admissions used in BenMAP are based solely on unscheduled 
hospitalizations. The total COI for an ICD-code-specific hospital stay lasting n days is 
estimated as the mean hospital charge plus n times the daily lost wage.  

County-specific median annual income divided by (52*5) was used to estimate county-
specific median daily wage. The data source for median annual income is the 2015 
American Community Survey (ACS). ACS provided data for median annual income for 
all individuals over 16 years old in 819 counties. For all other counties, ACS provided a 
five-year estimate of median annual income for the years 2010-2014. We calculated the 
ratio of state-specific median annual income in 2015 to state-specific median annual 
income during this five-year interval (2010-2014). This ratio was then applied to the 
2010-2014 county-specific median annual income to obtain an estimate of 2015 
county-specific income for the 2,323 counties without 2015 one-year estimates from 
ACS. Because wage data used in BenMAP are county-specific, the unit value for a 
hospital admission varies from one county to another.  

Although the data for hospital charges are from year 2016, the default hospital 
admission unit values in BenMAP are in year 2015 dollars to be consistent with the unit 
values of other health endpoints in BenMAP. This was done by inflating the medical 
costs (2016 dollars) to 2015 dollars using BenMAP’s medical inflation index.  

The hospital admission outcomes that the EPA uses in its regulatory analyses are given 
in Table H-3. Although unit values available for use in BenMAP are county-specific, the 
national median daily wage was used to calculate opportunity costs and total costs. 

Table H-3.  Core Unit Values Available for Hospital Admissions 

Endpoint ICD Codes 

Age Range Mean 
Hospital 
Charge    

(2015 $) 

Mean 
Length 
of Stay 
(days) 

Total Cost of 
Illness (Unit 

Value in 
2015$)* 

Min Max 

HA, All Cardiac Outcomes 390-459 0 99 $16,045 5.05 $16,918 
HA, All Respiratory 460-519 0 18 $9,075 3.49 $9,678 
HA, All Respiratory 460-519 65 99 $35,402 6.07 $36,451 
HA, Alzheimer’s Disease 331.0 65 99 $10,696 7.95 $12,070 
HA, Cardio-, Cerebro- and 
Peripheral Vascular Disease 

410- 414, 429, 
426- 427, 428, 

430-438, 440-449 
65 99 $14,665 4.82 $15,498 

HA, Respiratory-1 491, 492, 493, 496 0 99 $7,676 3.86 $8,343 
HA, Respiratory-2 464-466, 480-487, 

490-492, 493 65 99 $9,003 4.66 $9,808 

HA, Parkinson’s Disease 332 18 99 $12,190 3.83 $12,852 
* The opportunity cost of a day spent in the hospital was estimated, for the above exhibit, at the median 
daily wage of all workers, regardless of age. The median daily wage was calculated by dividing the 
median weekly wage ($864 in 2015$) by 5. The median weekly wages for 2015 were obtained from the 
U.S. Census Bureau’s 2015 American Community Survey, “Selected Economic Characteristics: 2015 
American Community Survey 1-Year Estimates.” 
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For two hospital admission endpoints, Alzheimer’s and Parkinson’s Disease, we 
calculated the lifetime cost of illness in addition to calculating the costs associated with 
the initial hospitalization.  

Valuation sources of Alzheimer’s disease lifetime medical costs were available from the 
Alzheimer's Association (2020) report and Jutkowitz et al. (2017). Using Alzheimer's 
Association (2020), we first developed an estimate of incremental annual medical 
expenses for Medicare beneficiaries living with Alzheimer’s Disease. Then, using the 
estimated life expectancy duration of 5 years from Jutkowitz et al. (2017), we estimated 
total discounted present values for a five-year stream of costs using 3 and 7 percent 
discount rates (Table H-4). We note that the median age of Alzheimer’s disease onset is 
after the age of 65. As such, we exclude any potential lost wages given the low rate of 
labor force participation in this age group. Lifetime medical costs, excluding initial 
hospitalization, are estimated at $156,920 using a 3% discount rate or $145,946 using a 
7% discount rate in 2015. 

Table H-4. Alzheimer’s Disease Valuation (2015$)  
Year  3% Discount Rate  7% Discount Rate  

0  $33,266  $33,266  

1  $32,297  $31,090  

2  $31,357  $29,056  

3  $30,443  $27,155  

4  $29,557  $25,379  

Total Lifetime Costs  $156,920  $145,946  

 

Estimates of lifetime costs for Parkinson’s Disease were provided by Yang et al. (2020), 
including direct, indirect, and non-medical costs. Using Yang et al. (2020), we first 
developed an annual estimate of excess costs associated with living with Parkinson’s 
Disease. Then, using the estimated life expectancy duration of 14.6 years from De Pablo-
Fernandez et al., 2017, we calculated the present value of lifetime costs over this period 
using 3 and 7 percent discount rates (Table H-5). Lifetime medical costs are estimated 
at $567,285 using a 3% discount rate or $445,792 using a 7% discount rate in 2015$. 

Table H-5. Lifetime Parkinson’s Disease Valuation Estimate Calculation 
Year  3% Discount Rate  7% Discount Rate  

0  $44,718 $44,718 
1  $43,416 $41,793 
2  $42,151 $39,059 
3  $40,924 $36,503 
4  $39,732 $34,115 
5  $38,574 $31,883 
6  $37,451 $29,798 
7  $36,360 $27,848 
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Year  3% Discount Rate  7% Discount Rate  

8  $35,301 $26,026 
9  $34,273 $24,324 
10  $33,275 $22,732 
11  $32,305 $21,245 
12  $31,364 $19,855 
13  $30,451 $18,556 
14  $29,564 $17,343 
14.6  $17,427 $9,992 
Total Lifetime Costs (14.6 yr 
survival)  $567,285 $445,792 

 

H.2.2 Emergency Room Visits 

As with hospital admissions, to value emergency room visits we develop primary COI 
estimates using data from the Healthcare Cost and Utilization Project (HCUP). The 2016 
Nationwide Emergency Department Sample (NEDS) provides recent, nationally 
representative information on medical treatment in emergency departments. In the 
case of emergency department visits, valuation estimates include only the medical 
costs. 

The NEDS dataset includes discharge-level observations. That is, each data point 
represents one individual being discharged from the emergency department (NEDS). 
Because individuals are treated in these settings for a variety of reasons, we use 
medical billing codes to extract observations related to each health endpoint. The 
epidemiological studies described in Appendix E, F and G provide ICD-9 codes for each 
illness; however, recent HCUP datasets (including NEDS) use ICD-10 codes. Thus, we 
first crosswalk the relevant ICD-9 codes to associated ICD-10 codes using a mapping 
provided by the U.S. Centers for Disease Control. We then identify all discharges in the 
HCUP datasets with ICD-10 codes that match to a study’s ICD-9 code(s). Because HCUP 
datasets often include multiple ICD-10 codes for each discharge, we focus on the 
principal diagnosis (i.e., the first-listed ICD-10 code).  

In the NIS dataset, we convert total charges (i.e., the amount billed to patients, 
employers, or insurance providers) into estimates of total costs (i.e., the final 
reimbursements for medical treatment). Unadjusted charges are not suitable for use in 
regulatory analysis because posted prices generally do not reflect actual medical costs 
due, in part, to negotiation between medical providers and payers (e.g., insurance 
companies). We assume that adjusted charges reflect the actual revenue the hospital 
receives and thus the actual cost of providing care. This conversion is completed using 
hospital-specific cost-to-charge (CCR) ratios provided with NIS. Because CCRs are not 
available for NEDS, we apply average CCRs for each endpoint in NIS to the same set of 
ICD-10 codes in NEDS.  



 Appendix H:  Core Health Valuation Functions in U.S. Setup 

BenMAP-CE User’s Manual Appendices March 2023 
H-7 

For each health endpoint, mean estimates are calculated using estimation commands 
for survey data to account for the sampling design and sample discharge weights of the 
HCUP data. This results in estimates of mean costs and a 95% confidence interval, 
which represents uncertainty in our valuation estimates of medical costs. The resulting 
estimates are presented in Table H-6.  

Table H-6.  Core Unit Values Available for Emergency Department Visits 

Endpoint ICD Codes 

Age Range 
Mean Unit Value 

(2015 $) 
Min Max 

ER visits, All Cardiac Outcomes 390-459 0 99 $1,161 
ER visits, respiratory 491-493, 460-466, 477, 

480-486, 496, 786.07, 
786.09 

0 99 $875 

 

H.2.3 Emergency Room Visits for Asthma  

Two unit values are currently available for use in BenMAP for asthma emergency room 
(ER) visits. One is $533.69, from Smith et al., 1997, who reported that there were 
approximately 1.2 million asthma-related ER visits made in 1987, at a total cost of 
$186.5 million, in 1987$. The average cost per visit was therefore $155 in 1987$, or 
$533.69 in 2015$ (using the CPI for medical care to adjust to 2015$). The uncertainty 
surrounding this estimate, based on the uncertainty surrounding the number of ER 
visits and the total cost of all visits reported by Smith et al. is characterized by a 
triangular distribution centered at $533.69, on the interval [$395.14, $738.19].  

A second unit value is $446.52 from Stanford et al. (1999). This study considered 
asthmatics in 1996-1997, in comparison to the Smith et al. (1997) study, which used 
1987 National Medical Expenditure Survey (NMES) data). In comparing their study, the 
authors note that the 1987 NMES, used by Smith et al., “may not reflect changes in 
treatment patterns during the 1990s.” In addition, its costs are the costs to the hospital 
(or ER) for treating asthma rather than charges or payments by the patient and/or third 
party payer. Costs to the ER are probably a better measure of the value of the medical 
resources used up on an asthma ER visit (see above for a discussion of costs versus 
charges).  

The unit values and the corresponding distributions available in BenMAP for asthma-
related ER visits are summarized in Table H-4. 

Table H-4. Core Unit Values Available for Asthma-Related ER Visits  

Basis for Estimate 
Age Range Unit Value 

(2015$) 

Distribution 
of Unit 
Value 

Parameters of 
Distribution 

Min Max P1 P2 
COI: Smith et al. (1997) 0 99 $534 Triangular $395 $738 
COI: Standford et al. (1999) 0 99 $447 Normal 8.95 -- 
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H.3  Other Health Endpoint Occurrence  
Monetary valuation estimates for health endpoint occurrences other than hospital 
admissions or emergency department visits are described below, listed in alphabetical 
order.  

H.3.1 Lung Cancer  

The unit value for non-fatal lung cancer incidence is derived from the direct medical 
costs of lung cancer treatment estimated by Kaye et al. (2018). Lost earnings are 
assumed to be negligible because of the low labor force participation rate among the 
age groups at highest risk of developing lung cancer (average age of diagnosis is 
approximately 70 years). Lung cancer treatment costs depend to a large extent on the 
phase of care, with costs in the initial year of treatment ($17,422 for males) far 
exceeding the continuing costs of treatment in subsequent years ($3,269 for males). We 
calculated costs over a five-year span, beginning with the initial onset which 
occurs with a delay after exposure.  The initial year’s treatment cost is summed with 
four years of continuing annual costs discounted by 3% and 7%.   

Furthermore, Kaye et al. (2018) provides separate treatment cost estimates for men 
and women. The distribution of new lung cancer cases by sex in the United States 
from Siegel et al. (2019) is approximately 51% male and 49% female. This distribution 
of new lung cancer cases was used to weight the sex-specific cost estimates from Kaye 
et al. (2018) to obtain a combined five-year cost estimate for both sexes. In order to 
adjust the cost estimate to 2015$ using a medical cost index, we assume that costs 
presented by Kaye et al. (2018) are in 2010$ as an approximate midpoint of the data 
years 2007-2012. Altogether, the cost of non-fatal lung cancer incidence over a five-
year period is estimated to be $33,809 using a 3% discount rate or $32,548 using 
a 7% discount rate (Table H-5).   

Table H-5. Core Unit Values Available for non-fatal Lung Cancer 

Health Endpoint Basis for Estimate 
Age Range Unit Value 

(2015$) Min Max 

Lung Cancer 

COI: 5 yrs med, 3% DR, Kaye 
(2018) 65 99 $33,809 

COI: 5 yrs med, 7% DR, Kaye 
(2018) 65 99 $32,548 

 

For an outcome such as lung cancer, there is an expected time lag between changes in 
pollutant exposure in a given year and the total realization of health effect benefits, 
commonly referred to in regulatory analyses as the “cessation lag.” The time between 
exposure and diagnosis can be quite long, on the order of years to decades, to realize 
the full benefits of the air quality improvements. This latency period is important in 
order to properly discount the economic value of these health benefits.   

To estimate the latency period, we performed a literature search using the keywords 
“non-fatal lung cancer,” “lung cancer,” “PM2.5,” “latency,” and “incidence.” Five papers 
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that estimate the risk of lung cancer incidence from PM2.5 exposure using a latency 
period were identified. The latency period length and country of the identified papers 
are summarized in Table H-6. Based on estimates of lung cancer latency from the 
literature, 10 years was the most common latency period estimate found in the 
literature (i.e., the mode).    

Table H-6. Latency Periods Used in Lung Cancer Risk Assessment Papers  

Study Latency Period (years) Location 
Gogna et al., 2019  5  Canada  
Bai et al., 2020  4; 10  Canada  
Kulhanova et al., 2018  10  France  
Coleman et al., 2020  10; 15  US  
Harrison et al., 2004  20  US  

  
To account for the latency period between air pollution reductions and avoided lung 
cancer diagnoses in our economic valuation estimates, we developed an age-at-
diagnosis cessation lag distribution method based on an approach previously used to 
estimate avoided cases of kidney cancer in analyses of water quality rules (U.S. EPA, 
2017). The method uses lung and bronchus cancer diagnosis age-distribution from the 
Surveillance, Epidemiology, and End Results Program (SEER). For this model, we 
assumed that the case reduction distribution would follow the age-pattern of cancer 
diagnosis between the age at which the exposure change occurs and 99 years. Table H-
7 shows an example case reduction distribution calculation for an exposure change 
experienced at 55. SEER estimates 92.2% of lung and bronchus cancer cases occur in 
individuals 55 years and older. Dividing the percentages in the remaining age bins by 
92.2% (the percent of lung and bronchus cancer diagnoses between the age of exposure 
change and end of lifetime), we find that there is a 24% chance that the risk reductions 
for a 55-year-old occur between ages 55 and 64, a 37% chance that the case reductions 
occurs between ages 65 and 74, etc. For distributing avoided cases within an age bin, 
we assume an equal incidence distribution across years within each bin.  

Table H-7. Percent Lung and Bronchus Cancer Incidence by Age and Distribution of 
Risk Reduction by Age for an Exposure Change at 55  

Age Group Percent New Cases per Year by Age* Percent of New Cases Occurring at or After Age 551 
0-20  0  NA  
20-34  0.2  NA  
35-44  0.9  NA  
45-54  6.6  NA  
55-64  21.8  24  
65-74  34.1  37  
75-84  26.6  29  
85-99  9.7  11  
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Age Group Percent New Cases per Year by Age* Percent of New Cases Occurring at or After Age 551 
55-99  92.2  100  
*May not sum to 100% due to rounding  
1Calculated as the percentage in column 2 divided by 92.2%, where 92.2% is the percentage of lung and 
bronchus incidence between age 55 and 99.  

 

H.3.2 Out of Hospital Cardiac Arrest  

The COI for cardiac arrests occurring outside of the hospital is derived from O'Sullivan 
et al. (2011), who estimate three-year medical costs associated with cardiovascular 
disease events among adults ages 35 and older in the U.S. The authors rely on 
administrative claims data from a large U.S. health plan and develop econometric 
models to predict medical costs for 15 different cardiovascular events, including cardiac 
arrest, referred to as resuscitated cardiac arrest. The dataset includes over 20 million 
commercial and Medical Advantage members between 2002 and 2006. Cardiac arrests 
are identified using the ICD-9 code 427.5. The authors use propensity score matching to 
develop a control group with which to compare costs versus individuals that suffered 
cardiac arrest. Medical costs occurring within the month of the event were excluded to 
avoid double counting hospitalization costs, which are separately captured by the 
hospitalization valuation functions. Over three years, the total medical costs, excluding 
hospitalization, are $36,142 (undiscounted, inflated to 2015$), or $35,753 using a 3% 
discount rate and $35,282 for a 7% discount rate (Table H-8). 

Table H-8. Valuation Estimate for Cardiac Arrests (2015$) 

Costs Cumulative Costs 
Annual Costs 

Undiscounted 3% Discount Rate 7% Discount Rate 
Month of Event* $43,904 $43,904 $43,904 $43,904 
Year 1 $71,901 $27,997 $27,997 $27,997 
Year 2 $74,701 $2,800 $2,718 $2,617 
Year 3 $80,046 $5,345 $5,038 $4,668 
Years 1-3 $80,046 $36,142 $35,753 $35,282 

*Excluded to avoid double-counting with hospitalization costs. 

H.3.3 Stroke  

The COI of non-fatal stroke incidence is calculated from Mu et al. (2017) estimates of 
direct medical costs incurred during initial hospitalization and the 360 days following 
hospital discharge. The study identifies individuals experiencing a first-time stroke 
using ICD-9 codes 434 and 436. The authors analyze medical claims from January 2006 
to March 2015 utilizing the retrospective IMS LifeLink PharMetrics Plus database for 
individuals ages 18 to 65, and Medicare Advantage and Medicare Supplemental Claims 
for individuals above the age of 65. The authors present acute care and long-term care 
costs stratified by three discharge classifications: dead at discharge, discharged with 
disability, and discharged without disability. We estimated the average costs for non-
fatal cases by weighting the costs for individuals discharged with disability and without 
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disability by their prevalence (23 and 77 percent, respectively). The resulting COI for 
non-fatal stroke incidence is $33,962 (2015$). This value reflects one-year of medical 
costs following stroke and does not include hospitalization costs, as these costs are 
separately captured by hospitalization valuation functions. We reviewed several studies 
that estimate longer-term medical costs (Goodwin et al., 2011, Lee et al., 2007, Luengo-
Fernandez et al., 2012, Nicholson et al., 2016) and concluded that roughly three 
quarters of costs are incurred in first year after stroke occurrence. 

H.4  Acute Symptoms and Illness Not Requiring Hospitalization  

Several acute symptoms and illnesses have been associated with air pollution, including 
acute bronchitis in children, upper and lower respiratory symptoms, and exacerbation 
of asthma (as indicated by one of several symptoms whose occurrence in an asthmatic 
generally suggests the onset of an asthma episode). In addition, several more general 
health endpoints which are associated with one or more of these acute symptoms and 
illnesses, such as minor restricted activity days, school loss days, and work loss days, 
have also been associated with air pollution. We briefly discuss the derivation of the 
unit values for acute respiratory symptoms (minor restricted activity days), asthma 
exacerbation, and school loss days. Tables H-9 and H-10 summarize the values used by 
EPA in their regulatory impact analyses. 

Table H-9. Additional Unit Values Available for Myocardial Infarction 

Basis of Estimate 
Age Range 

Medical Cost 
Opportunity 

Cost Total Cost Min Max 
COI: 3 yrs med, 5 yrs wages, 
3% DR, O’Sullivan (2011) 

0 24 $48,796  $0 $48,796  
25 44 $48,796  $13,301 $62,097 
45 54 $48,796  $19,604 $68,400 
55 65 $48,796  $113,316 $162,112 
66 99 $48,796  $0 $48,796  

COI: 3 yrs med, 5 yrs wages, 
7% DR, O’Sullivan (2011) 

0 24 $47,623  $0 $47,623  
25 44 $47,623  $11,908 $59,531 
45 54 $47,623  $17,552 $65,175 
55 65 $47,623  $101,451 $149,074 
66 99 $47,623  $0 $47,623  

 
 

Table H-10. Core Unit Values Available for Acute Symptoms and Illnesses 

Health 
Endpoint Basis for Estimate  

Age Range Unit 
Value 

(2015$) 

Distribution 
of Unit Value 

Parameters of 
Distribution 

Min Max P1 P2 
Minor 
Restricted 
Activity Days 

WTP: 1 day, CV studies 18 99 $70 Triangular 28.51 110.62 

New Onset COI: lifetime med, lifetime 0 17 $17,232 Normal 441.62 0 
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Health 
Endpoint Basis for Estimate  

Age Range Unit 
Value 

(2015$) 

Distribution 
of Unit Value 

Parameters of 
Distribution 

Min Max P1 P2 
Asthma productivity, 3% DR 4 21 $16,425 Normal 464.38 0 

35 99 $16,741 Normal 639.75 0 
COI: lifetime med, lifetime 
productivity, 7% DR 

0 17 $10,187 Normal 277.28 0 
4 21 $9,644 Normal 294.27 0 

35 99 $12,594 Normal 505.97 0 
Cough; Chest 
Tightness; 
Shortness of 
Breath; 
Wheeze 

WTP: 1 symptom-day, 
Dickie and Mesmen 
(2004) 

0 17 $219 LogNormal 5.390 0.078 

18 99 $115 LogNormal 5.390 0.078 

Asthma 
Symptoms 
(Albuterol 
Use), 
Albuterol 
Use 

COI: use of inhaler 

0 99 $0.35 None 0 0 

Allergic 
Rhinitis 

COI: 1 yr med costs 0 17 $600 None 0 0 

Work Loss 
Days * 

Median daily wage, 
county-specific 

18 65 $173 None N/A N/A 

School Loss 
Days 

Described in text, 3% DR 0 17 $1000 None N/A N/A 

Described in text, 7% DR 0 17 $610 None N/A N/A 

* Unit values for work loss days are county-specific, based on county-specific median wages. The unit 
value shown here is the national median daily wage, given for illustrative purposes only. 

H.4.1 Non-Fatal Myocardial Infarctions (Heart Attacks)  

In the absence of a suitable WTP value for reductions in the risk of non-fatal heart 
attacks, there are a variety of cost-of-illness unit values available for use in BenMAP. 
These cost-of-illness unit values incorporate two components: the direct medical costs 
and the opportunity cost (lost earnings) associated with the illness event. Because the 
costs associated with a heart attack extend beyond the initial event itself, the unit 
values include costs incurred over five years.  

Economic values for acute myocardial infarctions (AMIs, also known as heart attacks) 
have been derived from O'Sullivan et al. (2011), which estimate three-year medical 
costs associated with cardiovascular disease events among adults ages 35 and older in 
the U.S. The authors rely on administrative claims data from a large U.S. health plan and 
develop econometric models to estimate medical costs for 15 different cardiovascular 
events, including AMIs. The dataset includes over 20 million commercial and Medical 
Advantage members between 2002 and 2006. AMIs are identified using the ICD-9 code 
410. The authors use propensity score matching to develop a control group with which 
to compare costs versus individuals that suffered AMIs. We exclude medical costs 
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within the month of the event in an attempt avoid double counting hospitalization costs, 
which would be captured separately in the hospitalization valuation. Over three years, 
the total medical costs, excluding initial hospitalization, are $49,758 (undiscounted, 
inflated to 2015$), or $48,796 using a 3% discount rate and $47,623 for a 7% discount 
rate (Table 25). This study analyzed costs associated with individuals ages 35 and older. 
We apply the total medical costs to all ages from zero to 99, although only a small 
portion (<10%) of annual AMI incidence occurs in the age range below 35.  

We supplement AMI medical costs with estimates of lost earnings using age-specific 
estimates from Cropper and Krupnick (1990). Using a 3% discount rate, we estimated 
the following present discounted values in lost earnings over 5 years due to a heart 
attack: 0.219 times annual earnings for someone between the ages of 25 and 44, 3.534 
times annual earnings for someone between the ages of 45 and 54, and 1.245 times 
annual earnings for someone between the ages of 55 and 65. The corresponding age-
specific estimates of lost earnings using a 7% discount rate are 0.203, 3.287, and 1.158 
times annual earnings, respectively. Cropper and Krupnick (1990) does not provide lost 
earnings for populations under 25 or over 65. As such we do not include lost earnings in 
the cost estimates for these age groups. These costs, along with the total valuation 
estimates for AMIs, are presented in Table H-9. 

H.4.2 Minor Restricted Activity Days (MRADs)  

Two unit values are currently available in BenMAP for MRADs associated with acute 
respiratory symptoms. No studies are reported to have estimated WTP to avoid a minor 
restricted activity day (MRAD). Although Ostro and Rothschild (1989) estimated the 
relationship between PM2.5 and MRADs, rather than MRRADs (a component of MRADs), 
it is likely that most of the MRADs associated with exposure to PM2.5 are in fact 
MRRADs. The original unit value, then, assumes that MRADs associated with PM 
exposure may be more specifically defined as MRRADs, and uses the estimate of mean 
WTP to avoid a MRRAD. 

IEc (1993) derived an estimate of WTP to avoid a MRRAD, using WTP estimates from 
Tolley et al. (1986) for avoiding a three-symptom combination of coughing, throat 
congestion, and sinusitis. This estimate of WTP to avoid a MRRAD, so defined, is $38.37 
(1990 $). 

Any estimate of mean WTP to avoid a MRRAD (or any other type of restricted activity 
day other than WLD) will be somewhat arbitrary because the endpoint itself is not 
precisely defined. Many different combinations of symptoms could presumably result in 
some minor or less minor restriction in activity. Krupnick and Kopp (1988) argued that 
mild symptoms will not be sufficient to result in a MRRAD, so that WTP to avoid a 
MRRAD should exceed WTP to avoid any single mild symptom. A single severe 
symptom or a combination of symptoms could, however, be sufficient to restrict 
activity. Therefore, WTP to avoid a MRRAD should, these authors argue, not necessarily 
exceed WTP to avoid a single severe symptom or a combination of symptoms. The 
“severity” of a symptom, however, is similarly not precisely defined; moreover, one 
level of severity of a symptom could induce restriction of activity for one individual 
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while not doing so for another. The same is true for any particular combination of 
symptoms.  

Given that there is inherently a substantial degree of arbitrariness in any point estimate 
of WTP to avoid a MRRAD (or other kinds of restricted activity days), the reasonable 
bounds on such an estimate must be considered. By definition, a MRRAD does not result 
in loss of work. WTP to avoid a MRRAD should therefore be less than WTP to avoid a 
WLD. At the other extreme, WTP to avoid a MRRAD should exceed WTP to avoid a 
single mild symptom. The highest IEc midrange estimate of WTP to avoid a single 
symptom is $20.03 (1999 $), for eye irritation. The point estimate of WTP to avoid a 
WLD in the benefit analysis is $83 (1990 $). If all the single symptoms evaluated by the 
studies are not severe, then the estimate of WTP to avoid a MRRAD should be 
somewhere between $16 and $83. Because the IEc estimate of $38 falls within this 
range (and acknowledging the degree of arbitrariness associated with any estimate 
within this range), the IEc estimate is used as the mean of a triangular distribution 
centered at $38, ranging from $16 to $61. Adjusting to 2015$, this is a triangular 
distribution centered at $69.58, ranging from $29 to $111. 

The estimate for the MRADs that is used in EPA benefits analyses can be found in Table 
H-10. 

H.4.3 New Onset Asthma  

The unit value of new onset asthma is reported by Belova et al. (2020), who estimate 
the lifetime costs of asthma using data from the 2002 to 2010 Medical Expenditure 
Panel Survey (MEPS). The authors identify all individuals with current asthma (9,409 
out of 158,867 respondents) using the ICD-9 code 493 in the MEPS Medical Conditions 
Files. Additionally, they identify the date of asthma onset for these individuals. Using 
the MEPS Medical Events files, which capture most types of medical expenditures (e.g., 
hospitalizations, emergency room visits, outpatient visits, prescriptions), Belova et al., 
2020 estimated annual expenditures by asthma duration and age at onset. The annual 
healthcare costs for asthma—as measured by healthcare expenditures by all paying 
parties—vary from $800 to $2,100 for children and $900 to $2,500 for adults (2015$). 
They extrapolate these values to a lifetime cost stream for an incident chronic asthma 
case to generate present value estimates by onset age using discount rates of 3% and 
7%. Additionally, the authors consider productivity impacts that capture 1) the 
probability of not being able to work due to health reasons, 2) the impact of asthma on 
occupational choice, and 3) impact of asthma on weekly earnings. 

We adapted the Belova et al. (2020) estimates to align with the age groups 0 to 17, 4 to 
21, and 35 to 99. This calculation entails weighting the Belova et al. (2020) age groups 
by their relative prevalence and propagating the standard errors to derive new 
uncertainty bounds. Confidence intervals are not provided for productivity losses 
because BenMAP-CE is currently only capable of reflecting uncertainty in one 
parameter (in this case, medical costs) (Table H-10). 
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H.4.4 Asthma Symptoms  

The valuation estimates for cough, wheeze, chest tightness, and shortness of breath 
were estimated from the Dickie and Messman (2004) analysis of parents’ WTP to 
relieve asthma symptoms in children and adults. The authors derive the WTP estimates 
from an attribute-based, stated-choice question assessing preferences to avoid acute 
illness as part of a survey performed in Hattiesburg, Mississippi in 2000. Survey 
respondents are asked to identify whether they or their child have experienced the 
following asthma symptoms in the past year: cough with phlegm, shortness of breath 
with wheezing, chest pain on deep inspiration, and fever with muscle pain and fatigue. 
Respondents were then assigned one of sixteen illness profiles varying by symptom, 
symptom duration, in days, as well as discomfort level. Dickie and Messman (2004) 
calculate the WTP for children ages zero to seventeen as $219, for one avoided mild 
symptom-day (2015$). The authors also provide WTP estimates by symptom, however, 
they represent six avoided symptom-days. Therefore, we apply the same WTP value, for 
one avoided mild symptom-day, to each asthma symptom endpoint. 

We calculated the economic value for albuterol use associated with asthma symptoms 
through prescription costs for albuterol inhalers. Epocrates and GoodRx provide cost 
and actuation information for four common types of albuterol inhalers in 2020 dollars. 
Both online resources utilize published price lists, purchases, claim records, and 
pharmaceutical data to provide clinical statistics. Epocrates and the FDA provide cost 
and actuation information for one additional, less common, albuterol inhaler.70 We 
divide the cost of inhalers by the actuations per inhaler to calculate an average cost per 
actuation across all inhaler types. We then adjust the values to 2015$ using the 
Consumer Price Index (CPI) for medical care. Since medical cost index data were 
unavailable for 2020 at the time of these calculations, we used the most recently 
available index (2019). The resulting value for asthma symptoms, albuterol use is $0.35 
per actuation (2015$). 

Table H-10 summarizes the unit values utilized by EPA for asthma related health 
effects. 

H.4.5 Allergic Rhinitis  

 We derived COI estimates for allergic rhinits (also referred to as hay fever) from the 
2005 unit cost data presented by Soni (2008). The study utilizes data from the Medical 
Expenditure Panel Survey (MEPS) and identifies allergic rhinitis using ICD-9 code 477. 
Soni (2008) analyzes medical expenditures stratified by age group for the years 2000 
and 2005, and calculate the cost-of-illness as the mean expenditures per person for 
ambulatory care, in-patient services, and prescription medications. The resulting COI 
for allergic rhinitis is $600 for ages zero to seventeen (2015$; Table H-10). The COI 
estimate represents mean annual medical costs for patients with hay fever. Given that 
the health impact function for this endpoint relates to allergic rhinitis prevalence, these 
estimates are more applicable than values representing only first-year costs. 
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H.4.6 Work Loss Days (WLDs)  

Work loss days are valued at a day’s wage. BenMAP calculates county-specific median 
daily wages from county-specific annual wages by dividing by (52*5), on the theory that 
a worker’s vacation days are valued at the same daily rate as work days. The unit value 
for WLDs can be found in Table H-10. 

H.4.7  School Loss Days  

We include two costs of school loss days: caregiver costs and loss of learning. We 
calculate each separately and then sum them. Caregiver costs are valued at their 
employers’ average cost for employed caregivers. For unemployed caregivers, the 
opportunity cost of their time is calculated as the average take-home pay. The loss of 
learning is calculated based on the impact of absences on learning multiplied by the 
impact of school learning on adult earnings. The loss of learning estimate is currently 
only available for middle and high school students. The two costs are summed.  

The caregiver costs assumes that an adult caregiver stays home with the child and loses 
any wage income they would have earned that day. For working caregivers, we follow 
EPA guidance and value their time at the average wage including fringe benefits and 
overhead costs (U.S. EPA, 2020a). The average daily wage in 2021 was $195 (2015$, 
assumed to be the average weekly wage divided by 5, US Bureau of Labor Statistics, 
2021a), which yields an average daily labor cost of $340 for employed parents applying 
average multiplier of 1.46 for fringe benefits and 1.2 for overhead. For nonworking 
caregivers, we assume that the opportunity cost of time is the average after tax 
earnings. We estimate the income tax rate for a median household to be 7%, yielding 
net earnings of $195*0.93 or $181 ($2015). The income tax rate of 7% is the percentage 
difference in median post-tax income and median income from (U.S. Census Bureau, 
2021). 

The probability that a parent is working is measured with the employment population 
ratio among people with their own children under 18 and is 77.2% (US Bureau of Labor 
Statistics, 2021b). Combining the cost of working and nonworking caregivers yields a 
caregiver cost of $305 per school loss day. 

To measure the loss of learning, we update the Liu et al., 2021 estimate. Liu et al., 2021 
estimated the impact of a school absence on learnings as measured by an end-of-course 
test score.  We multiply by an estimate of the impact of learning as measured by end-of-
course test scores on adult income from Chetty et al., 2014. This approach yields an 
estimated learning loss of $2,230 per school absence (discounted at 3%) or $975 per 
school absence (discounted at 7%).   

We updated the Chetty et al., 2014 estimate to use 2010 income and to estimate lifetime 
incomes discounted at 3% and 7%.  Liu et al., 2021 provide an estimate that a school 
absence leads to a $1,200 reduction in lifetime earnings, based on the Chetty et al., 2014 
estimate that lifetime earnings are $522,000 (2010$).  We use 2010 ACS data from 
IPUMS to calculate expected lifetime earnings of $892,579 (discounting at 3%) and 
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$390,393 (discounting at 7%).   We then multiply the Liu et al., 2021 estimate of $1200 
by (892,579/522,000) and (390,393/522,000) and convert from 2010 dollars to 2015 
dollars based on the Consumer Price Index for All Urban Consumers. 

We use caregiver costs for preschool and elementary school children and the sum of 
caregiver costs and loss of learning for middle school and high school students. We 
calculate that 31% of children under 18 are middle school and high school ages 13-18, 
assuming each bin distributed equally), so the combined average effect is ($305 + 
$2,230*0.31) or $1000 with 3% discounting, or ($305 + $975*0.31) or $610 with 7% 
discounting (U.S. Census Bureau, 2010). 

A unit value based on the approach described above is likely to understate the value of a 
school loss day in at least four ways:  

1) It omits WTP to avoid the symptoms/illness which resulted in the school absence 

2) It omits the opportunity cost of time for non-working caregivers’ day 

3) The approach omits other aspects of school attendance such as social and emotional 
development or meals 

4) It does not account for deleterious effects on student learning in other subjects.   

H.5  Developing Income Growth Adjustment Factors  
Chapter 4 of the BenMAP-CE User Manual provides instructions for formatting and 
adding income growth data. These values are used to adjust WTP estimates for growth 
in real income. As discussed in that chapter, evidence and theory suggest that WTP 
should increase as real income increases.  When reviewing the economic literature to 
develop income growth adjustment factors, it is important to have an economist assist. 
For an overview of valuation, see Chapter 7: Aggregating, Pooling, and Valuing.  

Adjusting WTP to reflect growth in real income requires three steps:  

1.  Identify relevant income elasticity estimates from the peer-reviewed literature. 

2.  Calculate changes in future income. 

3.  Calculate adjustments to WTP based on changes in future income and income 
elasticity estimates. 

1. Identifying income elasticity estimates  

Income elasticity estimates relate changes in demand for goods to changes in income. 
Positive income elasticity suggests that as income rises, demand for the good also rises. 
Negative income elasticity suggests that as income rises, demand for the good falls. 
BenMAP-CE does not adjust Cost-of-Illness (COI) estimates according to changes in 
income elasticity due to the fact that COI estimates the direct cost of a health outcome; 
instead we adjust this metric using inflation factors described above. BenMAP-CE 
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includes income elasticity estimates specific to the type of health endpoint associated 
with the WTP estimate. BenMAP-CE contains elasticity estimates for three types of 
health effects: minor, severe and mortality. Minor health effects are those of short 
duration. Severe, or chronic, health effects are of longer duration. Consistent with 
economic theory, the peer reviewed literature indicates that income elasticity varies 
according to the severity of the health effect. A review of the literature revealed a range 
of income elasticity estimates that varied across the studies and according to the 
severity of health endpoint. Table H-11 summarizes the income elasticity estimates for 
minor health effects, severe health effects and mortality. Here we have provided a 
lower-, upper- and central-elasticity estimate for each type of health endpoint.  

Table H-11. Income Elasticity Estimates  

Health Endpoint Lower Bound Central Estimate Upper Bound 

Minor Health Effect 0.04 0.15 0.30 

Severe and Chronic 
Health Effects 0.25 0.45 0.60 

Mortality 0.08 0.40 1.00 
 

2. Calculating changes in future income  

 

The next input to the WTP adjustment is annual changes in income. Historical US Gross 
Domestic Product (GDP) data (1990-2016) comes from the U.S. Bureau of Commerce’s 
Bureau of Economic Analysis (BEA). GDP values were adjusted for inflation using the 
BEA’s price index for GDP. We divided historical GDP values by populations provided by 
the BEA to estimate GDP per capita to maintain internal consistency in the calculation. 
Future changes in annual income are based on data presented in the Annual Energy 
Outlook (AEO) 2020, a report prepared by the U.S. Energy Information Administration 
(EIA) (AEO, 2020). AEO published annual GDP projections through the year 2050, 
which were adjusted for inflation using the GDP Chain-type Price Index reported by 
AEO. We divided projected GDP values by AEO’s population projections to estimate per 
capita GDP, again maintaining internal consistency in the calculation.      

3. Calculating changes in WTP  

The income elasticity estimates from Table H-11 and the estimated changes in future 
income may then be used to estimate changes in future WTP for each health endpoint. 
The adjustment formula follows four steps:  

1) 
ε=

∆𝑊𝑊𝑊𝑊𝑊𝑊
𝑊𝑊𝑊𝑊𝑊𝑊
∆𝐼𝐼
𝐼𝐼

=
(𝑊𝑊𝑊𝑊𝑊𝑊2 −𝑊𝑊𝑊𝑊𝑊𝑊1) × (𝐼𝐼2 + 𝐼𝐼1)
(𝐼𝐼2 − 𝐼𝐼1) × (𝑊𝑊𝑊𝑊𝑊𝑊2 + 𝑊𝑊𝑊𝑊𝑊𝑊1)
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2) ε𝐼𝐼2𝑊𝑊𝑊𝑊𝑊𝑊2 +  ε𝐼𝐼2𝑊𝑊𝑊𝑊𝑊𝑊1 −  ε𝐼𝐼1𝑊𝑊𝑊𝑊𝑊𝑊2 − ε𝐼𝐼1𝑊𝑊𝑊𝑊𝑊𝑊1

= 𝐼𝐼2𝑊𝑊𝑊𝑊𝑊𝑊2 + 𝐼𝐼1𝑊𝑊𝑊𝑊𝑊𝑊2 −  𝐼𝐼2𝑊𝑊𝑊𝑊𝑊𝑊1 − 𝐼𝐼1𝑊𝑊𝑊𝑊𝑊𝑊1 
 

3) 𝑊𝑊𝑊𝑊𝑊𝑊2 × ( ε𝐼𝐼2 −  ε𝐼𝐼1 −  𝐼𝐼2 −  𝐼𝐼1) = 𝑊𝑊𝑊𝑊𝑊𝑊1 × ( ε𝐼𝐼1 −  ε𝐼𝐼2 −  𝐼𝐼1 −  𝐼𝐼2) 
 

4) 𝑊𝑊𝑊𝑊𝑊𝑊2 = 𝑊𝑊𝑊𝑊𝑊𝑊1 ×
 ε𝐼𝐼1 −  ε𝐼𝐼2 −  𝐼𝐼1 −  𝐼𝐼2
 ε𝐼𝐼2 −  ε𝐼𝐼1 −  𝐼𝐼2 −  𝐼𝐼1

 

 
Table H-12 summarizes the income-based WTP adjustments used within BenMAP-CE 
for minor health endpoints, severe health endpoints, and premature mortality. 
BenMAP-CE applies the “mid” income growth adjustment to the WTP for each 
corresponding health endpoint. The “low” and “upper” are provided for bounding the 
“mid” estimate. 
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Table H-12. Income-Based WTP Adjustments by Health Effect and Year 

Year Low Mid Upper Low Mid Upper Low Mid Upper
1990 1 1 1 1 1 1 1 1 1
1991 0.999425 0.997845 0.995695 0.996411 0.99355 0.991409 0.99885 0.994264 0.985722
1992 1.000278 1.001043 1.002086 1.001738 1.003131 1.004177 1.000556 1.002783 1.006971
1993 1.000845 1.003171 1.006353 1.005291 1.009545 1.012746 1.00169 1.00848 1.021335
1994 1.001941 1.007299 1.014651 1.012194 1.022057 1.029519 1.003886 1.019583 1.049686
1995 1.002529 1.009516 1.019122 1.01591 1.028821 1.038614 1.005064 1.025578 1.065196
1996 1.003545 1.01336 1.026899 1.022366 1.040622 1.054532 1.007103 1.036027 1.092569
1997 1.004809 1.018155 1.036642 1.030442 1.055472 1.074652 1.009642 1.049157 1.127596
1998 1.006098 1.023062 1.046661 1.038734 1.070818 1.095552 1.012234 1.062703 1.164493
1999 1.007498 1.02841 1.057639 1.047803 1.087723 1.1187 1.015052 1.077598 1.205983
2000 1.008676 1.032928 1.066959 1.055489 1.102148 1.138556 1.017428 1.090286 1.242108
2001 1.008675 1.032924 1.06695 1.055482 1.102134 1.138537 1.017426 1.090274 1.242075
2002 1.008984 1.03411 1.069403 1.057504 1.105943 1.143797 1.018048 1.093621 1.251727
2003 1.009739 1.037019 1.075433 1.062468 1.115325 1.15678 1.019574 1.101858 1.275708
2004 1.010863 1.041352 1.084451 1.069884 1.129408 1.176348 1.021844 1.114208 1.312269
2005 1.011864 1.045228 1.092549 1.076534 1.142112 1.194079 1.02387 1.125332 1.345838
2006 1.012602 1.04809 1.09855 1.081456 1.151559 1.207315 1.025363 1.133594 1.371175
2007 1.012957 1.049471 1.101452 1.083835 1.156139 1.213747 1.026084 1.137596 1.383575
2008 1.012532 1.047821 1.097984 1.080992 1.150667 1.206063 1.025223 1.132814 1.368769
2009 1.011166 1.042525 1.086897 1.071894 1.13324 1.181689 1.022457 1.117566 1.322336
2010 1.011843 1.045146 1.092377 1.076393 1.141841 1.1937 1.023827 1.125095 1.345117
2011 1.012165 1.046395 1.094994 1.07854 1.145958 1.199463 1.024479 1.128697 1.356115
2012 1.012764 1.04872 1.099873 1.082541 1.153646 1.210245 1.025692 1.135418 1.376817
2013 1.013213 1.050467 1.103547 1.085551 1.159447 1.2184 1.026602 1.140487 1.392581
2014 1.013911 1.053184 1.109275 1.090241 1.168516 1.231181 1.028017 1.148402 1.417472
2015 1.014754 1.056473 1.116227 1.095927 1.179559 1.246797 1.029727 1.158031 1.4482
2016 1.015112 1.057873 1.119194 1.098352 1.184283 1.253496 1.030454 1.162147 1.461489
2017 1.015291 1.058571 1.120676 1.099562 1.186645 1.25685 1.030817 1.164204 1.468167
2018 1.016092 1.061712 1.127353 1.105013 1.197312 1.272029 1.032446 1.173487 1.498591
2019 1.016945 1.06506 1.134495 1.110837 1.208762 1.288383 1.03418 1.183439 1.531756
2020 1.017494 1.067221 1.139119 1.114604 1.216197 1.299038 1.035298 1.189894 1.553577
2021 1.017858 1.068652 1.142185 1.1171 1.221138 1.306133 1.036037 1.194181 1.568204
2022 1.018224 1.070097 1.145287 1.119624 1.226144 1.313335 1.036784 1.198523 1.583131
2023 1.018585 1.071523 1.148352 1.122117 1.231098 1.320474 1.03752 1.202817 1.598006
2024 1.018991 1.073127 1.151804 1.124923 1.236689 1.328546 1.038347 1.20766 1.61492
2025 1.019446 1.074925 1.155682 1.128074 1.242981 1.337648 1.039273 1.213106 1.634116
2026 1.019915 1.076785 1.159702 1.131337 1.249515 1.347122 1.040231 1.218759 1.654237
2027 1.02041 1.078749 1.163955 1.134787 1.256443 1.357191 1.041242 1.224747 1.675778
2028 1.020937 1.080842 1.168495 1.138469 1.263858 1.367993 1.042318 1.231152 1.699074
2029 1.021436 1.082827 1.17281 1.141964 1.270919 1.378307 1.043337 1.237246 1.721494
2030 1.021959 1.08491 1.17735 1.145639 1.278367 1.389214 1.044406 1.243669 1.745395
2031 1.022479 1.086985 1.181879 1.149303 1.285815 1.400148 1.045469 1.250087 1.76956
2032 1.022969 1.088943 1.186166 1.152768 1.292879 1.410546 1.046472 1.256169 1.792727
2033 1.023487 1.091016 1.190711 1.15644 1.300389 1.421627 1.047532 1.262629 1.817622
2034 1.024004 1.093088 1.195265 1.160115 1.307929 1.432783 1.048592 1.269111 1.842903
2035 1.024493 1.095052 1.199589 1.163603 1.315106 1.443429 1.049594 1.275275 1.867234
2036 1.02498 1.097006 1.203902 1.16708 1.322282 1.454101 1.050592 1.281434 1.891828
2037 1.025478 1.099009 1.208332 1.170647 1.329668 1.465113 1.051613 1.287768 1.917424
2038 1.025984 1.101051 1.212857 1.174289 1.33723 1.476418 1.052652 1.294248 1.943931
2039 1.026492 1.103099 1.217405 1.177947 1.34485 1.487839 1.053694 1.300771 1.970954
2040 1.027004 1.105171 1.222018 1.181654 1.352597 1.499482 1.054748 1.307398 1.998757
2041 1.027508 1.107212 1.226569 1.185309 1.36026 1.511031 1.055784 1.313948 2.026591
2042 1.02803 1.109326 1.231295 1.189101 1.368236 1.523084 1.056857 1.320759 2.055917
2043 1.028555 1.111457 1.236071 1.19293 1.376316 1.535329 1.057937 1.327653 2.086006
2044 1.029075 1.113573 1.240821 1.196736 1.384373 1.547576 1.059008 1.334521 2.116397
2045 1.029605 1.115728 1.245672 1.20062 1.392623 1.560152 1.060099 1.341548 2.147923
2046 1.030116 1.117812 1.250373 1.20438 1.400637 1.572403 1.061152 1.348368 2.178951
2047 1.030638 1.119946 1.255197 1.208236 1.408882 1.585045 1.06223 1.355378 2.211295
2048 1.031135 1.121978 1.259801 1.211913 1.416771 1.597176 1.063255 1.36208 2.242655
2049 1.03162 1.123965 1.264312 1.215513 1.424519 1.609122 1.064256 1.368656 2.273847
2050 1.032088 1.125883 1.268677 1.218994 1.432035 1.620744 1.065222 1.37503 2.304491

Minor Health Endpoint Severe Health Endpoint Mortality
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H.6  Inflation Indices  
Chapter 4 of the BenMAP-CE User Manual provides instructions for formatting and 
adding inflation data. These values are used to adjust economic values to express 
monetary units in a consistent dollar year. As discussed in that chapter, BenMAP-CE 
includes inflation factors for three different types of values. The source for these values 
is included in Table H-13. These values were re-indexed to $2015 prior to import in 
BenMAP-CE. 

Table H-13. Inflation Factors  

Name Description Years Source 

All Goods 
Index 

Value of generic 
goods and services 

1980-2020 

BLS, Data Series CUUR0000SA0 at 
http://data.bls.gov/cgi-bin/surveymost?cu 

Medical Cost 
Index 

Value of medical 
expenses 

BLS, Data Series CUUR0000SAM at 
http://data.bls.gov/cgi-bin/surveymost?cu 

Wage Index Value of wages BLS, Employment Cost Trends. Table 5 at 
http://www.bls.gov/web/eci/ecicois.txt 

 

 

  

http://data.bls.gov/cgi-bin/surveymost?cu
http://data.bls.gov/cgi-bin/surveymost?cu
http://www.bls.gov/web/eci/ecicois.txt
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Appendix I. Additional Health Valuation Functions in U.S. Setup 

In this Appendix, we present additional health valuation functions. Unlike those in 
Appendix H, these functions are included in the U.S. Setup but are not currently used by 
the U.S. EPA in regulatory impact analyses. For the health valuation functions currently 
used by EPA, see the following page: https://www.epa.gov/benmap/benmap-
community-edition. For Ozone Health Valuation Functions, click the “U.S. EPA approach 
for quantifying and valuing ozone effects” link. For PM2.5 Health Valuation Functions, 
click the “U.S. EPA approach for quantifying and valuing PM effects” link. 

 

I.1  Mortality 
 I.1.1 Value of a Statistical Life Based on Selected Studies  

In addition to the value of a statistical life based on the results of 26 studies in Appendix 
H, section H.1.1, we have included three alternatives based loosely on the results of 
work by Mrozek and Taylor (2002) and Viscusi and Aldy (2003). Each of these three 
alternatives has a mean value of $7.6 million (2015$), but with a different distribution: 
normal, uniform, triangular, and beta. Table H-10 presents the distribution parameters 
for these additional valuations in BenMAP. 

Table I-1. Additional Unit Values for VSL for additional value-of-life studies 

Basis for Estimate * 

Age Range at 
Death 

Unit Value 
(VSL) 

(2015$) 

Distribution of 
Unit Value 

Parameters of Distribution 
Min Max P1 P2 

VSL, based on 2015$ range 
from $1.38 million to 
$13.76 million – 95% CI of 
assumed normal 
distribution 

0 99 7,570,229 Normal 3,160,172 – 

VSL based on 2015$ range 
from $1.38 million to 
$13.76 million – assumed 
uniform distribution 

0 99 7,570,229 Uniform 1,376,405 13,764,053 

VSL based on 2015$ range 
from $1.38 million to 
$13.76 million – assumed 
triangular distribution 

0 99 7,570,229 Triangular 1,376,405 13,764,053 

* The original value of a statistical life was calculated in 1990 $.  We have used a factor of 1.8134, based 
on the All-Items CPI-U. 

I.2  Hospital Admissions  
This sub-section presents the unit values for hospital admissions that are not used by 
the EPA in regulatory impact analyses but are included in BenMAP. See Appendix H, 
Section H.2 for more information about these unit values. Table I-2 includes the unit 

https://www.epa.gov/benmap/benmap-community-edition
https://www.epa.gov/benmap/benmap-community-edition
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values for hospital admissions for endpoints included in BenMAP but not used by the 
EPA in their regulatory impact analyses. 

Table I-2.  Additional Unit Values Available for Hospital Admissions 

Endpoint ICD Codes 

Age Range Mean 
Hospital 
Charge    

(2015 $) 

Mean 
Length 
of Stay 
(days) 

Total Cost of 
Illness (Unit 

Value in 
2015$)* 

Min Max 

HA, All Cardiovascular 390-429 0 99 $33,063 4.59 $33,856 
HA, All Cardiovascular 390-429 0 64 $45,659 4.12 $46,371 
HA, All Cardiovascular 390-429 65 99 42,642 4.88 43,485 
HA, Asthma 493 0 64 $16,655 3.00 $17,174 
HA, Chronic Lung Disease 490-496 18 64 $21,989 3.90 $22,663 
HA, Congestive Heart Failure 428 65 99 $33,734 5.32 $34,654 
HA, Dysrhythmia 427 0 99 $33,063 3.72 $33,706 
HA, Ischemic Heart Disease 410-414 65 99 $55,591 4.61 $56,388 
HA, All Respiratory 460-519 0 1 $16,929 3.19 $17,480 
HA, All Respiratory 460-519 0 99 $32,563 5.35 $33,488 
HA, Asthma 493 65 99 $26,153 4.79 $26,981 
HA, Asthma 493 0 99 $18,590 3.37 $19,172 
HA, Chronic Lung Disease 490-496 65 99 $25,413 4.79 $26,241 
HA, Chronic Lung Disease 490-496 0 99 $22,312 4.10 $23,021 
HA, Chronic Lung Disease (less 
Asthma) 

490-492, 494-
496 18 64 $23,980 4.23 $24,711 

HA, Chronic Lung Disease (less 
Asthma) 

490-492, 494-
496 65 99 $25,254 4.79 $26,082 

HA, Chronic Lung Disease (Less 
Asthma) 

490-492, 494-
496 0 99 $24,834 4.59 $25,627 

HA, Pneumonia 480-487 65 99 $30,229 5.77 $31,226 
HA, Pneumonia 480-487 0 99 $29,046 5.25 $29,953 

* The opportunity cost of a day spent in the hospital was estimated, for the above exhibit, at the median 
daily wage of all workers, regardless of age. The median daily wage was calculated by dividing the 
median weekly wage ($864 in 2015$) by 5. The median weekly wages for 2015 were obtained from the 
U.S. Census Bureau’s 2015 American Community Survey, “Selected Economic Characteristics: 2015 
American Community Survey 1-Year Estimates.” 

I.3  Chronic Illness  
This sub-section presents the unit values developed for chronic bronchitis, chronic 
asthma, and non-fatal myocardial infarctions.  

I.3.1 Chronic Bronchitis  

PM-related chronic bronchitis is expected to last from the initial onset of the illness 
throughout the rest of the individual’s life. WTP to avoid chronic bronchitis would 
therefore be expected to incorporate the present discounted value of a potentially long 
stream of costs (e.g., medical expenditures and lost earnings) as well as WTP to avoid 
the pain and suffering associated with the illness. Both WTP and COI estimates are 
currently available in BenMAP.  
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I.3.1.1 Unit Value Based on Two Studies of WTP  

Two contingent valuation studies, Viscusi et al. (1991) and Krupnick and Cropper 
(1992), provide estimates of WTP to avoid a case of chronic bronchitis. Viscusi et al. 
(1991) and Krupnick and Cropper (1992) were experimental studies intended to 
examine new methodologies for eliciting values for morbidity endpoints. Although 
these studies were not specifically designed for policy analysis, they can be used to 
provide reasonable estimates of WTP to avoid a case of chronic bronchitis. As with 
other contingent valuation studies, the reliability of the WTP estimates depends on the 
methods used to obtain the WTP values. The Viscusi et al. and the Krupnick and 
Cropper studies are broadly consistent with current contingent valuation practices, 
although specific attributes of the studies may not be.  

The study by Viscusi et al. (1991) uses a sample that is larger and more representative 
of the general population than the study by Krupnick and Cropper (1992), which selects 
people who have a relative with the disease. However, the chronic bronchitis described 
to study subjects in the Viscusi study is severe, whereas a pollution-related case may be 
less severe.  

The relationship between the severity of a case of chronic bronchitis and WTP to avoid 
it was estimated by Krupnick and Cropper (1992). We used that estimated relationship 
to derive a relationship between WTP to avoid a severe case of chronic bronchitis, as 
described in the Viscusi study, and WTP to avoid a less severe case. The estimated 
relationship (see Table 4 in Krupnick and Cropper) can be written as: 

 

where a denotes all the other variables in the regression model and their coefficients, ß 
is the coefficient of sev, estimated to be 0.18, and sev denotes the severity level (a 
number from 1 to 13). Let x (< 13) denote the severity level of a pollution-related case 
of chronic bronchitis, and 13 denote the highest severity level (as described in Viscusi 
et al., 1991). Then 

 

and 

 

Subtracting one equation from the other, 

 

or 

( ) sevWTPn ×+= βα1

13)(1 13 ×+= βαWTPn

xWTPn x ×+= βα)(1

)13()(1)(1 13 xWTPnWTPn x −×=− β
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Exponentiating and rearranging terms, 

 

There is uncertainty surrounding the exact values of WTP13; x, and ß, and this 
uncertainty can be incorporated in the equation, if you request that the analysis be 
carried out in “uncertainty mode.” The distribution of WTP to avoid a severe case of 
chronic bronchitis, WTP13, is based on the distribution of WTP responses in the Viscusi 
et al. (1991) study. The distribution of x, the severity level of an average case of 
pollution-related chronic bronchitis, is modeled as a triangular distribution centered at 
6.5, with endpoints at 1.0 and 12.0. And the distribution of ß is normal with mean = 0.18 
and std. dev.= 0.0669 (the estimate of b and standard error reported in Krupnick and 
Cropper, 1992).  

In uncertainty mode, BenMAP uses a Monte Carlo approach. On each Monte Carlo 
iteration, random draws for these three variables are made, and the resulting WTPx is 
calculated from the equation above. Because this function is non-linear, the expected 
value of WTP for a pollution- related case of CB cannot be obtained by using the 
expected values of the three uncertain inputs in the function (doing that will 
substantially understate mean WTP). A Monte Carlo analysis suggests, however, that 
the mean WTP to avoid a case of pollution-related chronic bronchitis is about $470,000 
(2015$), but not adjusted for the growth of income). Therefore, if you request that the 
analysis be carried out in “point estimate” mode, that is the unit value that is used. 

I.3.1.2 Alternative Cost of Illness Estimates 

Cost of illness estimates for chronic bronchitis were derived from estimates of annual 
medical costs and annual lost earnings by Cropper and Krupnick (1999). This study 
estimated annual lost earnings resulting from chronic bronchitis as a function of age at 
onset of the illness, for the following age categories: 25-43, 35-44, 45-54, and 55-65 
(see Cropper and Krupnick, Table 8). Annual medical expenses were estimated for 10-
years age groups (0-9, 10-19, 20-29, ..., 80-89). We derived estimates of the present 
discounted value of the stream of medical and opportunity costs for people whose age 
of onset is 30, 40, 50, 60, 70, and 80. Medical costs (which are in 1977$ in the Cropper 
and Krupnick study) were inflated to 2015$ using the CPI-U for medical care; lost 
earnings (opportunity costs) were inflated to 2015$ using the Employment Cost Index 
for Wages and Salaries. Life expectancies were assumed to be unaffected by the illness. 
For example, an individual at age 70 has a life expectancy of 14.3 more years, and we 
assumed that someone whose age of onset of chronic bronchitis is 70 will also live for 
14.3 more years. (Source of life expectancies: National Center for Health Statistics, 
1999, Table 5.) We also assumed that opportunity costs at ages 66 and over were zero. 
Present discounted values were calculated using three and seven percent discount 
rates.  

)13(1 13 x
WTP
WTPn

x

−×=







β

)13(
13

x
x eWTPWTP −•−×= β
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For each of the two discount rates, there are three cost of illness unit values for chronic 
bronchitis available in BenMAP, for the following age categories: 27-44, 45-64, and 65+. 
These are the age categories that were used in the epidemiological study that estimated 
a concentration-response function for chronic bronchitis (Abbey et al., 1995b). The 
estimate for the 27-44 age group is an average of the present discounted values 
calculated for ages 30 and 40; the estimate for the 45-64 age category is an average of 
the present discounted values calculated for ages 50 and 60; and the estimate for the 
65+ age category is an average of the present discounted values calculated for ages 70 
and 80. The suite of unit values available for use in BenMAP is shown in Table I-3. 

Table I-3. Additional Unit Values Available for Chronic Bronchitis 

Basis for Estimate  
Age of Onset 

Present 
Discounted 

Value of 
Medical 

Costs 

Present 
Discounted 

Value of 
Opportunity 

Costs Unit Value Distribution Min Max 
WTP: average severity 30 99 N/A N/A $468,641 Custom 

COI: med costs + wage 
loss, 3% DR 

27 44 $32,478 $199,479 $231,947 None 
45 64 $40,699 $111,959 $152,658 None 
65 99 $18,993 $0 $18,993 None 

COI: med costs + wage 
loss, 7% DR 

27 44 $13,509 $118,460 $131,969 None 
45 64 $24,651 $87,732 $112,383 None 
65 99 $15,468 $0 $15,468 None 

 

I.3.2  Chronic Bronchitis Reversals  

The unit value for chronic bronchitis reversals assumes that this is chronic bronchitis 
with a severity level of 1. The method for generating a distribution of unit values in 
BenMAP is therefore the same as the WTP-based unit value method for chronic 
bronchitis (see above), with x =1. The mean of this distribution is $206,765.  

I.3.3  Chronic Asthma  

Two studies have estimated WTP to avoid chronic asthma in adults. Blumenschein and 
Johannesson (1998) used two different contingent valuation (CV) methods, the 
dichotomous choice method and a bidding game, to estimate mean willingness to pay 
for a cure for asthma. The mean WTP elicited from the bidding game was $189 per 
month, or $2,268 per year (in 1996$). The mean WTP elicited from the dichotomous 
choice approach was $343 per month, or $4,116 per year (in 1996$). Using $2,268 per 
year, a three percent discount rate, and 1997 life expectancies for males in the United 
States (National Center for Health Statistics, 1999, Table 5), the present discounted 
value of the stream of annual WTPs is $65,568 (in 2015$).  

O’Conor and Blomquist (1997) estimated WTP to avoid chronic asthma from estimates 
of risk-risk tradeoffs. Combining the risk-risk tradeoffs with a statistical value of life, the 
annual value of avoiding asthma can be derived. Assuming a value of a statistical life of 



 Appendix I: Additional Health Valuation Functions in U.S. Setup 

BenMAP-CE User’s Manual Appendices March 2023 
I-6 

$6 million, they derived an annual WTP to avoid asthma of $1500 (O’Connor and 
Blomquist, 1997, p. 677). For a value of a statistical life of $5,894,400 (in 1997 $), the 
corresponding implied annual value of avoiding chronic asthma, based on O’Conor and 
Blomquist would be $1,474. Assuming a three percent discount rate and 1997 life 
expectancies for males in the United States, the present discounted value of the stream 
of annual WTPs would be $41,646 (in 2015$). A unit value, based on a three percent 
discount rate, is the average of the two estimates, or $53,607. Following the method 
used for the §812 Prospective analysis, the uncertainty surrounding the WTP to avoid a 
case of chronic asthma among adult males was characterized by a triangular 
distribution on the range determined by the two study-specific WTP estimates. A 
second unit value, using a seven percent discount rate, is also available for use in 
BenMAP. The method used to derive this unit value is the same as that described above 
for the three percent discount rate unit value. The unit values available for use in 
BenMAP are summarized in Table I-4 below. 

Table I-4. Additional Unit Values Available for Chronic Asthma  

Basis for Estimate 
Age Range 

Unit Value 

Distribution 
of Unit 
Value 

Parameters of 
Distribution 

Min Max P1 P2 
WTP: 3% DR (Discount Rate) 27 99 $53,607 Triangular $41,646 $65,568 
WTP: 7% DR 27 99 $34,901 Triangular $27,114 $42,689 

 

I.4  Acute Symptoms and Illness Not Requiring Hospitalization  
See Appendix H, Section H.3 for a general explanation of acute symptoms and illness not 
requiring hospitalization. Table I-5 summarizes unit values for acute bronchitis in 
children, acute respiratory symptoms (minor restricted activity days), any of 19 
respiratory symptoms, upper respiratory symptoms, lower respiratory symptoms, and 
work loss days (WLDs) 

Table I-5. Additional Unit Values Available for Acute Symptoms and Illnesses (in 
2015 $)  

Health 
Endpoint Basis for Estimate * 

Age Range Unit 
Value 

Distribution 
of Unit Value 

Parameters of 
Distribution 

Min Max P1 P2 
Acute 
Bronchitis 

WTP: 1 day illness, CV studies 0 17 $82 Uniform 24.10 139.16 
WTP: 6 day illness, CV studies 0 17 $490 Uniform 144.60 834.98 
WTP: 28 symptom-days, 
Dickie and Ulery 

0 17 $529 Lognormal 6.27 0.0907 

Minor 
Restricted 
Activity 
Days 

WTP: 3 symptoms 1 day, 
Dickie and Ulery (2002) 

18 99 $138 Lognormal 4.93 0.0649 

Lower 
Respiratory 
Symptoms 

WTP: 1 day, CV studies 0 17 $21 Uniform 9.56 33.68 
WTP: 2 symptoms 1 day, 
Dickie and Ulery (2002) 

0 17 $264 Lognormal 5.58 0.07048 
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Health 
Endpoint Basis for Estimate * 

Age Range Unit 
Value 

Distribution 
of Unit Value 

Parameters of 
Distribution 

Min Max P1 P2 
WTP: 2x1 day, CV studies 0 17 $42 Uniform 19.12 67.36 

Upper 
Respiratory 
Symptoms 

WTP: 1 day, CV studies 0 17 $34 Uniform 12.29 59.34 
WTP: 2 symptoms 1 day, 
Dickie and Ulery (2002) 

0 17 $264 Lognormal 5.58 0.07048 

WTP: 2x1 day, CV studies 0 17 $68 Uniform 24.58 118.68 
Any of 19 
Respiratory 
Symptoms 

WTP: 1 day illness, CV studies 1 65 $33 Uniform 0 66.41 

* All unit values pulled from a lognormal distribution from Model 1, Table III in Dickie and Ulery are 
multiplied by 0.973811 to adjust for a difference in mean household income between the study 
participants and the general population. The unit values shown here have already been adjusted.  
 

I.4.1 Non-Fatal Myocardial Infarctions (Heart Attacks)  

See Appendix H, Section H.3.1 for an explanation of this valuation function.  

Using age-specific annual lost earnings estimated by Cropper and Krupnick (1999), and 
a three percent discount rate, we estimated the following present discounted values in 
lost earnings over 5 years due to a heart attack (2015$): $13,301 for someone between 
the ages of 25 and 44, $19,604 for someone between the ages of 45 and 54, and 
$113,316 for someone between the ages of 55 and 65. The corresponding age-specific 
estimates of lost earnings using a seven percent discount rate are $11,908, $17,552, and 
$101,451, respectively. Cropper and Krupnick do not provide lost earnings estimates 
for populations under 25 or over 65. As such we do not include lost earnings in the cost 
estimates for these age groups. 

We have found three additional sources of estimates of the direct medical costs of a 
myocardial infarction (MI) in the literature:  

 Wittels et al. (1990) estimated expected total medical costs of MI over 5 years to be 
$51,211 (in 1986$) for people who were admitted to the hospital and survived 
hospitalization. (There does not appear to be any discounting used.) Wittels et al. was 
used to value coronary heart disease in the 812 Retrospective Analysis of the Clean Air 
Act. Using the CPI-U for medical care, the Wittels estimate is $187,530 in year 2015$. 
This estimated cost is based on a medical cost model, which incorporated therapeutic 
options, projected outcomes and prices (using “knowledgeable cardiologists” as 
consultants). The model used medical data and medical decision algorithms to estimate 
the probabilities of certain events and/or medical procedures being used. The authors 
note that the average length of hospitalization for acute MI has decreased over time 
(from an average of 12.9 days in 1980 to an average of 11 days in 1983). Wittels et al. 
used 10 days as the average in their study. It is unclear how much further the length of 
stay (LOS) for MI may have decreased from 1983 to the present. The average LOS for 
ICD code 410 (MI) in the year-2000 AHQR HCUP database is 5.5 days. However, this 
may include patients who died in the hospital (not included among our non-fatal MI 
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cases), whose LOS was therefore substantially shorter than it would be if they hadn’t 
died.  

 Eisenstein et al. (2001) estimated 10-year costs of $44,663, in 1997$ (using a three 
percent discount rate), or $85,052 in 2015$ for MI patients, using statistical prediction 
(regression) models to estimate inpatient costs. Only inpatient costs (physician fees and 
hospital costs) were included. Estimates from Eisenstein et al. are included in Appendix 
I.4 as they are not used in EPA impact analyses. 

 Russell et al. (1998) estimated first-year direct medical costs of treating nonfatal MI of 
$15,540 (in 1995$), and $1,051 annually thereafter. Converting to year 2015$, that 
would be $38,253 for a 5-year period, using a three percent discount rate, or $36,167, 
using a seven percent discount rate.  

The age group-specific estimates of opportunity cost over a five-year period are 
combined with the medical cost estimates from each of the three studies listed above. 
Because opportunity costs are derived for each of five age groups, there are 3 x 5 = 15 
unit values for each of 2 discount rates, or 30 unit values available for use in BenMAP. 
These are given in Table I-6 below.  

Note that we were unable to achieve complete consistency, unfortunately, because of 
limitations in the input studies. For example, although we calculated opportunity costs 
over a five-year period using a 3 percent and a 7 percent discount rate, we were not 
able to do the same for medical costs, except for the medical costs estimated by Russell 
et al. (in which they estimate an annual cost). Wittels et al. appear to have used no 
discounting in their estimate; Eisenstein et al. used a 3 percent discount rate. Similarly, 
although almost all cost estimates (opportunity costs and medical costs) are for a 5-
year period, the medical cost estimate reported by Eisenstein et al. is for a 10-year 
period. There was no reasonable method for inferring from that study what costs over a 
5-year period would be. 

Table I-6. Additional Unit Values Available for Myocardial Infarction 

Basis of Estimate 
Age Range 

Medical Cost * 
Opportunity 

Cost ** Total Cost Min Max 
COI: 5 yrs med, 5 yrs wages, 
3% DR, Wittels (1990) 

0 24 $187,530 $0 $187,530  
25 44 $187,530 $13,301 $200,831  
45 54 $187,530 $19,604 $207,134  
55 65 $187,530 $113,316 $300,846  
66 99 $187,530 $0 $187,530  

COI: 5 yrs med, 5 yrs wages, 
3% DR, Russell (1998) 

0 24 $38,253 $0 $38,253  
25 44 $38,253 $13,301 $51,554  
45 54 $38,253 $19,604 $57,857  
55 65 $38,253 $113,316 $151,569  
66 99 $38,253 $0 $38,253  

COI: 10 yrs med, 5 yrs wages, 0 24 $85,052 $0 $85,052  
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Basis of Estimate 
Age Range 

Medical Cost * 
Opportunity 

Cost ** Total Cost Min Max 
3% DR, Eisenstein (2001) 25 44 $85,052 $13,301 $98,353  

45 54 $85,052 $19,604 $104,656  
55 65 $85,052 $113,316 $198,368  
66 99 $85,052 $0 $85,052  

COI: 5 yrs med, 5 yrs wages, 
7% DR, Wittels (1990) 

0 24 $187,530 $0 $187,530  
25 44 $187,530 $11,908  $199,438  
45 54 $187,530 $17,552 $205,082  
55 65 $187,530 $101,451 $288,981  
66 99 $187,530 $0 $187,530  

COI: 5 yrs med, 5 yrs wages, 
7% DR, Russell (1998) 

0 24 $36,167 $0 $36,167  
25 44 $36,167 $11,908  $48,075  
45 54 $36,167 $17,552 $53,719  
55 65 $36,167 $101,451 $137,618  
66 99 $36,167 $0 $36,167  

COI: 10 yrs med, 5 yrs wages, 
7% DR, Eisenstein (2001) 

0 24 $85,052 $0 $85,052  
25 44 $85,052 $11,908  $96,960  
45 54 $85,052 $17,552 $102,604  
55 65 $85,052 $101,451 $186,503  
66 99 $85,052 $0 $85,052  

* An average of the 5-year costs estimated by Wittels et al. (1990) and Russell et al. (1998). Note that Wittels et al. 
appears not to have used discounting in deriving a 5-year cost of $187,530; Russell et al. estimated first- year direct 
medical costs and annual costs thereafter. The resulting 5-year cost is $38,253, using a 3% discount rate, and 
$36,167, using a 7% discount rate. Medical costs were inflated to 2015$ using CPI for medical care. 
** From Cropper and Krupnick (1999). Present discounted value of 5 yrs of lost earnings, at 3% and 7% discount 
rate, adjusted from 1977$ to 2015$ using CPI-U “all items”.  
 

I.4.2 Acute Bronchitis in Children  

Estimating WTP to avoid a case of acute bronchitis is difficult for several reasons. First, 
WTP to avoid acute bronchitis itself has not been estimated. Estimation of WTP to avoid 
this health endpoint therefore may be based on estimates of WTP to avoid symptoms 
that occur with this illness. Second, a case of acute bronchitis may last more than one 
day, whereas it is a day of avoided symptoms that is typically valued. Finally, the C-R 
function used in the benefit analysis for acute bronchitis was estimated for children, 
whereas WTP estimates for those symptoms associated with acute bronchitis were 
obtained from adults.  

Three unit values are available in BenMAP for acute bronchitis in children. In previous 
benefit analyses, EPA used a unit value of $81.63 (adjusted to 2015$). This is the 
midpoint between a low estimate and a high estimate. The low estimate is the sum of 
the midrange values recommended by IEc (1994) for two symptoms believed to be 
associated with acute bronchitis: coughing and chest tightness. The high estimate was 
taken to be twice the value of a minor respiratory restricted activity day. For a more 
complete description of the derivation of this estimate, see Abt Associates (2000, p. 4-
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30). The above unit value assumes that an episode of acute bronchitis lasts only one 
day. However, this is generally not the case, as acute bronchitis typically lasts 6 or 7 
days. To generate a unit value representative of an entire acute bronchitis episode, the 
original unit value of $81.63 was multiplied by 6 or 7. A unit value of $490 (=$81.63 x 6) 
was therefore derived. 

As discussed the epidemiological study relating air pollution to the incidence of acute 
bronchitis referred to children specifically. The value of an avoided case should 
therefore be WTP to avoid a case in a child, which may be different from WTP to avoid a 
case in an adult. Recent work by Dickie and Ulery (2002) suggests, in fact, that parents 
are generally willing to pay about twice as much to avoid sickness in their children as in 
themselves. In one of several models they estimated, the natural logarithm of parents’ 
WTP was related both to the number of symptom-days avoided and to whether it was 
their child or themselves at issue. Dickie and Ulery noted that “experiencing all of the 
symptoms [considered in their study - cough and phlegm, shortness of 
breath/wheezing, chest pain, and fever] for 7 days, or 28 symptom-days altogether, is 
roughly equivalent to a case of acute bronchitis ...” Using this model, and assuming that 
a case of acute bronchitis can be reasonably modeled as consisting of 28 symptom-days, 
we estimated parents’ WTP to avoid a case of acute bronchitis in a child to be $529. This 
is the third unit value available in BenMAP.  

The mean household income among participants in the Dickie and Ulery CV survey was 
slightly higher than the national average. We therefore adjusted all WTP estimates that 
resulted from their models downward slightly, using an income elasticity of WTP of 
0.147, the average of the income elasticities estimated in the four models in the study. 
The adjustment factor thus derived was 0.9738. Estimates for Acute Bronchitis are 
available in Table I-5. 

I.4.3 Minor Restricted Activity Days (MRADs)  

See Appendix H, Section H.3.3 for more information. 

In addition to the estimate of WTP to avoid a MRRAD used in EPA benefits analyses, a 
second unit value is based on Model 1, Table III in Dickie and Ulery (2002). This model 
estimates the natural logarithm of parents’ WTP to avoid symptoms as a linear function 
of the natural logarithm of the number of symptom-days avoided and whether or not 
the person avoiding the symptoms is the parent or the child. The unit value derived 
from this model, assuming that an MRAD consists of one day of 3 symptoms in an adult, 
is $138. 

The estimate for the MRADs that is not used in EPA benefits analyses can be found in 
Table I-5. 

I.4.4 Asthma Exacerbation 

Table I-7 below describes the unit values for Asthma-related Acute Symptoms and 
Illnesses included in BenMAP but not used by the EPA for their regulatory impact 
analyses. All unit values for this section are summarized in Table I-7. 
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Several respiratory symptoms in asthmatics or characterizations of an asthma episode 
have been associated with exposure to air pollutants. All of these can generally be taken 
as indications of an asthma exacerbation (“asthma attack”) when they occur in an 
asthmatic. BenMAP therefore uses the same set of unit values for all of the variations of 
“asthma exacerbation” that appear in the epidemiological literature.  

In Rowe and Chestnut (1986), the mean of the four average WTPs is $32 (1990 $), or 
$59 in 2015$. The uncertainty surrounding this estimate was characterized by a 
continuous uniform distribution on the range defined by the lowest and highest of the 
four average WTP estimates from Rowe and Chestnut, [$12, $54] in 1990$, or [$21, 
$98] in 2015$. In previous benefit analyses, the EPA only used the unit value for asthma 
exacerbation in children from Rowe and Chestnut (1986) for avoiding a “bad asthma 
day”. There are two other unit values for children and two unit values for adults 
included in BenMAP discussed further below. 

The first unit value for adult is based on willingness to pay to avoid an asthma 
exacerbation from four WTP estimates from Rowe and Chestnut (1986) for avoiding a 
“bad asthma day.” The second unit value for adults was derived by using Model 1, Table 
III in Dickie and Ulery (2002) -- the same model used for acute bronchitis, LRS, and URS 
-- assuming that an asthma exacerbation consists of 1 symptom-day. As noted above, 
this model relates parental WTP to the number of symptom-days avoided and to 
whether it is the parent or the child at issue. The unit value derived from this model for 
adults is $74.  

Two additional unit values are available for children. One of these is twice the original 
unit value, or $104, based on the evidence from Dickie and Ulery (2002) that parents 
are willing to pay about twice as much to avoid symptoms and illness in their children 
as in themselves. The third unit value is based on Model 1, Table III in Dickie and Ulery 
(the same model used for asthma exacerbation in adults, only now with the “adult or 
child” variable set to 1 rather than 0). The unit value derived from this model is $221.  

Table I-7. Additional Unit Values Available for Asthma-related Acute Symptoms and 
Illnesses 

Health 
Endpoint Basis for Estimate * Age Range Unit 

Value 
Unit Value 

Distribution 

Parameters of 
Distribution 

Min Max P1 P2 
Asthma 
Attacks; 
Cough; 
Moderate or 
Worse; One 
or more 
symptoms; 
Shortness of 
Breath; 
Wheeze 

Bad asthma day, Rowe 
and Chestnut (1986) 

18 99 $59 Uniform 21.42 97.56 

1 symptom-day, Dickie 
and Ulery (2002) 

18 99 $104 Lognormal 4.64 0.0957 

2 x bad asthma day, 
Rowe and Chestnut 
(1986) 

0 17 $118 Uniform 42.84 195.12 

1 symptom-day, Dickie 
and Ulery (2002) 

0 17 $221 Lognormal 5.39 0.0925 

Cough; 
Moderate or 

Bad asthma day, Rowe 
and Chestnut (1986) 

0 17 $59 Uniform 21.42 97.56 
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Health 
Endpoint Basis for Estimate * Age Range Unit 

Value 
Unit Value 

Distribution 

Parameters of 
Distribution 

Min Max P1 P2 
Worse; One 
or more 
symptoms; 
Shortness of 
Breath; 
Wheeze 

* All unit values pulled from a lognormal distribution from Model 1, Table III in Dickie and Ulery, 2002, 
are multiplied by 0.973811 to adjust for a difference in mean household income between the study 
participants and the general population. The unit values shown here have already been adjusted. 

I.4.5 Upper Respiratory Symptoms (URS) in Children 

In past benefit analyses, EPA based willingness to pay to avoid a day of URS on 
symptom-specific WTPs to avoid those symptoms identified as part of the URS complex 
of symptoms. Pope et al. (1991) defined a day of URS as consisting of one or more of the 
following symptoms: runny or stuffy nose; wet cough; and burning, aching, or red eyes. 
The three contingent valuation (CV) studies shown in Table I-8 have estimated WTP to 
avoid various morbidity symptoms that are either within the URS symptom complex 
defined by Pope et al., or are similar to those symptoms. 

Table I-8. Median WTP Estimates and Derived Midrange Estimates (in 2015$) 

Symptom* Dickie et al. Tolley et al. 
(1986) 

Loehman et al. 
(1979) 

Mid-Range 
Estimate 

Throat congestion 6.84 29.65 - 18.14 
Head/sinus congestion 7.98 31.94 14.87 18.14 
Coughing 2.29 25.11 9.03 12.70 
Eye irritation - 28.50 - 28.50 
Headache 2.29 45.63 - 18.14 
Shortness of breath 0.00 - 19.16 9.06 
Pain upon deep inhalation (PDI) 8.01 - - 8.01 
Wheeze 4.57 - - 4.57 
Coughing up phlegm 4.99 - - 4.99 
Chest tightness 11.42 - - 11.42 

* All estimates are WTP to avoid one day of symptom. Midrange estimates were derived by IEc (1993). 
** 10% trimmed mean. 

 
The three individual symptoms that were identified as most closely matching those 
listed by Pope et al. for URS are cough, head/sinus congestion, and eye irritation, 
corresponding to “wet cough,” “runny or stuffy nose,” and “burning, aching or red eyes,” 
respectively. A day of URS could consist of any one of the seven possible “symptom 
complexes” consisting of at least one of these three symptoms. The original unit value 
for URS was based on the assumption that each of these seven URS complexes is equally 
likely. This unit value for URS, $33.91, is just an average of the seven estimates of mean 
WTP for the different URS complexes. This unit value can be found in Table I-5. In 
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addition to the one unit value that EPA used in past benefit analyses, two other unit 
values can be found in BenMAP. Recent research by Dickie and Ulery (2002) suggests 
that parental WTP to avoid symptoms and illnesses in their children is about twice 
what it is to avoid those symptoms and illnesses in themselves. This second unit value 
of $67.82 (=2 x $33.91) is derived from the unit value found in Appendix H, Section 
H.3.4.  

Another unit value was derived by using Model 1, Table III in Dickie and Ulery (2002) 
(the same model used for acute bronchitis), assuming that a day of URS consists of 2 
symptoms. As noted above, this model relates parental WTP to the number of 
symptom-days avoided and to whether it is the parent or the child at issue. The unit 
value derived from this model is $264.  

A WTP estimate elicited from parents concerning their WTP to avoid symptoms in their 
children may well include some calculation of lost earnings resulting from having to 
lose a day of work. Estimates from the Dickie and Ulery model therefore (appropriately) 
probably include not only their WTP to have their children avoid the pain and suffering 
associated with their illness, but also the opportunity cost of a parent having to stay 
home with a sick child. Unit values can be found in Table I-5. 

I.4.6 Lower Respiratory Symptoms (LRS) in Children  

The three unit values for LRS in children currently available in BenMAP follow the same 
pattern as those for URS in children. In past benefit analyses, EPA based willingness to 
pay to avoid a day of LRS on symptom-specific WTPs to avoid those symptoms 
identified as part of the LRS complex of symptoms. Schwartz et al. (1994) defined a day 
of LRS as consisting of at least two of the following symptoms: cough, chest tightness, 
coughing up phlegm, and wheeze. Of the symptoms for which WTP estimates are 
available (listed in Table H-8), those that most closely match the symptoms listed by 
Schwartz et al. are coughing, chest tightness, coughing up phlegm, and wheeze. A day of 
LRS, as defined by Schwartz et al., could consist of any one of 11 possible combinations 
of at least two of these four symptoms. In the absence of any further information, each 
of the 11 possible “symptom clusters” was considered equally likely. The unit value for 
LRS, $21.43, is just an average of the eleven estimates of mean WTP for the different 
LRS symptom clusters. In addition to the original value used by the EPA in past benefits 
analyses, BenMAP contains a second unit value is twice the original unit value, or 
$42.86. This value is based on the evidence from Dickie and Ulery (2002) that parents 
are willing to pay about twice as much to avoid symptoms and illness in their children 
as in themselves. The third unit value is based on Model 1, Table III in Dickie and Ulery, 
assuming that, as for URS, a day of LRS consists of 2 symptoms. As noted above, this 
model relates parental WTP to the number of symptom-days avoided and to whether it is the 
parent or the child at issue. The unit value derived from this model is $264. These two 
additional unit values can be found in Table I-5. 
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I.4.7 Any of 19 Respiratory Symptoms 

The presence of “any of 19 acute respiratory symptoms” is a somewhat subjective 
health effect used by Krupnick et al. (1990). Moreover, not all 19 symptoms are listed in 
the Krupnick et al. study. It is therefore not clear exactly what symptoms were included 
in the study. Even if all 19 symptoms were known, it is unlikely that WTP estimates 
could be obtained for all of the symptoms. Finally, even if all 19 symptoms were known 
and WTP estimates could be obtained for all 19 symptoms, the assumption of additivity 
of WTPs becomes tenuous with such a large number of symptoms. The likelihood that 
all 19 symptoms would occur simultaneously, moreover, is very small.  

Acute respiratory symptoms must be either upper respiratory symptoms or lower 
respiratory symptoms. In the absence of further knowledge about which of the two 
types of symptoms is more likely to occur among the “any of 19 acute respiratory 
symptoms,” we assumed that they occur with equal probability. Because this health 
endpoint may also consist of combinations of symptoms, it was also assumed that there 
is some (smaller) probability that upper and lower respiratory symptoms occur 
together. To value avoidance of a day of “the presence of any of 19 acute respiratory 
symptoms” we therefore assumed that this health endpoint consists either of URS, or 
LRS, or both. We also assumed that it is as likely to be URS as LRS and that it is half as 
likely to be both together. That is, it was assumed that “the presence of any of 19 acute 
respiratory symptoms” is a day of URS with 40 percent probability, a day of LRS with 40 
percent probability, and a day of both URS and LRS with 20 percent probability. Using 
the point estimates of WTP to avoid a day of URS and LRS derived above, the point 
estimate of WTP to avoid a day of “the presence of any of 19 acute respiratory 
symptoms” is:  

 

Because this health endpoint is only vaguely defined, and because of the lack of 
information on the relative frequencies of the different combinations of acute 
respiratory symptoms that might qualify as “any of 19 acute respiratory symptoms,” the 
unit dollar value derived for this health endpoint must be considered only a rough 
approximation. The value for any of 19 respiratory symptoms can be found in Table I-5.

 $33.20. = $21.43) + .91(0.20)($33 + .43)(0.40)($21 + .91)(0.40)($33
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Appendix J. Population & Other Data in U.S. Setup  

This section describes the population, monitor, and demographic data in the United 
States setup. It consists of the following three subsections: 

 Population Data. This describes how BenMAP forecasts population; the block-level and 
county-level data underlying the forecasts; and the PopGrid software application, which 
aggregates block-level population data to whatever grid definition might be needed.  

 Monitor Data. The default United States setup has ozone, PM2.5, PM10, lead, NO2, and SO2 
monitor data for the years 2000-2007. Data for CO are available at the BenMAP website: 
http://www.epa.gov/air/benmap/. 

 Demographic Datasets. This subsection describes the various datasets in the U.S. setup 
related to demography: household size, poverty rates, and educational attainment. 

J.1 Population Data in U.S. Setup 
The U.S. setup in BenMAP calculates health impacts for any desired grid definition, so 
long as you have a shapefile for that grid definition and population data for that grid 
definition. In this description, we use the term “population grid cell” to refer to a cell 
(e.g., county) within a grid definition. The foundation for calculating the population 
level in the population grid-cells is 2010 Census block data. A separate application 
called “PopGrid,” described below, combines the Census block data with any user-
specified set of population grid- cells, so long as they are defined by a GIS shape file. 
Unfortunately, PopGrid relies on extremely large census files that are too large to 
include with BenMAP -- hence the need for the separate application. The PopGrid 
program is available on the BenMAP-CE website here: www.epa.gov/benmap 

Within any given population grid-cell, BenMAP has 304 unique race-ethnicity-gender-
age groups: 19 age groups by 2 ethnic groups by gender by 4 racial groups 
(19*2*2*4=304). Table J-1 presents the 304 population variables available in BenMAP. 
As discussed below, these variables are available for use in developing age estimates in 
whatever grouping you require. 

Table J-1. Demographic Groups and Variables Available in BenMAP  

Racial Group Ethnicity Age Gender 
White, African 
American, Asian, 
American Indian 

Hispanic, Non-
Hispanic 

<1, 1-4, 5-9, 10-14, 15-19, 20-24, 25-29, 
30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 
60-64, 65-69, 70-74, 75-79, 80-84, 85+ 

Male, Female 

 

In this section on population data in the U.S. setup, we describe:  

 Forecasting Population. This describes how BenMAP forecasts population.  

http://www.epa.gov/air/benmap/
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 Data Needed. This section describes the block-level and county-level data underlying 
the forecasts. 

 PopGrid. This section reviews the PopGrid software application, which aggregates 
block-level population data to whatever grid definition might be need. 

J.1.1 How BenMAP Forecasts Population 

In calculating the population in age groups that may include a portion of one of the pre-
specified demographic groups in Table J-1, BenMAP assumes the population is uniformly 
distributed in the age group. For example, to calculate the number of children ages 3 
through 12, BenMAP calculates:  

 

To estimate population levels for the years after the last Census in 2010, BenMAP scales 
the 2010 Census-based estimate with the ratio of the county-level forecast for the 
future year of interest over the 2010 county-level population level. Woods & Poole 
(2015) provides the county-level population forecasts until 2050 used to calculate the 
scaling ratios; these data are discussed in detail below.  

In the simplest case, where one is forecasting a single population variable, say, children 
ages 4 to 9 in the year 2020, BenMAP calculates: 

 

Where the gth population grid-cell is wholly located within a given county. 

In the case, where the gth grid-cell includes “n” counties in its boundary, the situation is 
somewhat more complicated. BenMAP first estimates the fraction of individuals in a given age 
group (e.g., ages 4 to 9) that reside in the part of each county within the gth grid-cell. 
BenMAP calculates this fraction by simply dividing the population all ages of a given county 
within the gth grid-cell by the total population in the gth grid-cell:  

 

Multiplying this fraction with the number of individuals ages 4 to 9 in the year 2010 
gives an estimate of the number of individuals ages 4 to 9 that reside in the fraction of 
the county within the gth grid-cell in the year 2010: 
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To then forecast the population in 2020, we scale the 2010 estimate with the ratio of 
the county projection for 2020 to the county projection for 2010:  

 

Combining all these steps for “n” counties within the gth grid-cell, we forecast the 
population of persons ages 4 to 9 in the year 2020 as follows:  

 

In the case where there are multiple age groups and multiple counties, BenMAP first 
calculates the forecasted population level for individual age groups, and then combines 
the forecasted age groups. In calculating the number of children ages 4 to 12, BenMAP 
calculates:  

 

 

 

To estimate population for 2055, we extrapolate Woods and Poole projections from the 
2045 to 2050 period: 

𝑊𝑊2055,𝑖𝑖 = 𝑊𝑊2050,𝑖𝑖 ∗
𝑊𝑊2050,𝑖𝑖

𝑊𝑊2045,𝑖𝑖
 

where W is the growth weight (relative to 2010) and i is each demographic cell (i.e., 
unique combinations of county, gender, ethnicity, race, and age range). 

J.1.2  Data Needed for Forecasting  

Underlying the population forecasts in BenMAP there are block-level databases used to 
provide year 2010 population estimates and a county-level database of forecast ratios. Both 
files have the same set of 304 race-ethnicity-gender-age population groups.  

The block-level data is typically not used directly in BenMAP, and instead is used with 
the PopGrid software (described below) to provide year 2010 estimates for a grid 
definition of interest (e.g., 12 kilometer CMAQ grid). The output from PopGrid with the 
year 2010 population estimates can then be loaded into BenMAP.  
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The county-level data comes pre-installed in the U.S. setup, and is not something that 
the user needs to load herself. These data are simply county-level ratios of a year (2009, 
2011-2055) and year 2010 population data for each county and each of the 304 race-
ethnicity-gender-age population groups.  

We describe the development of each databases below. 

J.1.2.1 Block-Level Census 2010  

There are about five million “blocks” in the United States, and for each block we have 
304 race-ethnicity-gender-age groups. The block-level population database is created 
separately for each state, in order to make the data more manageable. (A single national 
file of block data would be about six gigabytes.)  

The initial block file from the U.S. Census Bureau is not in the form needed. The block 
data has 7 racial categories and 23 age groups, as opposed to the 4 and 19 used in 
BenMAP. Table J-2 summarizes the initial set of variables and the final desired set of 
variables. 

Table J-2. Race, Ethnicity and Age Variables in 2010 Census Block Data  

Type Race Ethnicity Gender Age 
Initial 
Variables 
(SF1 file) 

White Alone, Black Alone, 
Native American Alone, Asian 
Alone, Pacific 
Islander/Hawaiian Alone, Other 
Alone, Two or More Alone 

-- Male, 
Female 

0-4, 5-9, 10-14, 15-17, 18-
19, 20, 21, 22-24, 25-29, 
30-34, 35-39, 40-44, 45-
49, 50-54, 55-59, 60-61, 
62-64, 65-66, 67-69, 70-
74, 75-79, 80-84, 85+ 

Final 
Desired 
Variables 

White, African-American, Asian-
American, Native-American 

Hispanic, 
Non-
Hispanic 

Female, 
Male 

<1,1-4, 5-9, 10-14, 15-19, 
20-24, 25-29, 30-34, 35-
39, 40-44, 45-49, 50-54, 
55-59, 60-64, 65-69, 70-
74, 75-79, 80-84, 85+ 

 

The initial set of input files are as follows.  

 Census 2010 block-level and tract-level files (Summary File 1)  
Data: http://www2.census.gov/census_2010/04-Summary_File_1/  
Docs: http://www.census.gov/prod/cen2010/doc/sf1.pdf  

 Census 2000 MARS national-level summary  
Docs: http://www.census.gov/popest/archives/files/MRSF-01-US1.pdf  

The SF1 tract-level and MARS data, as described below, are needed to reorganize the 
variables that come initially in the block-levelSF1 file. (For the sake of completeness, we 
note that there exists a county-level Census 2000 MARS file; however, due to major 
population count discrepancies between the county-level MARS file and block-level SF1 
file, we used only the nation-level summary table. Tables in MARS documentation file 
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did not have the discrepancies that the county-level file had. We were unable to get an 
adequate explanation of this from the U. S. Census.)  

The steps in preparing the data are as follows:  

1. Adjust Age-classifications:  

We combined some age groups in the block-level SF1 data to match the age groups 
wanted for BenMAP. For example, we combined age groups 15-17 and 18-19 to create 
the 15-19 age group used in BenMAP. Then, in the case of the 0-4 age group, we split it 
into <1 and 1-4 using the tract-level SF1 data, which gave us the fraction of 0-4 year-
olds who are <1.  

2. Fill in Missing Racial-Ethnic Interactions:  

We used the tract-level SF1 data to calculate the fraction of Hispanics in each ethnically-
aggregated subpopulation from the block-level data, by age and sex. We used these 
fractions to distribute each age-sex-race-block-level datum into Hispanics and non-
Hispanics.  

3. Assign “Other” and “Multi-Racial” to the Remaining Four Racial Categories:  

We assign the “Other” race category in two steps. First, based on the national MARS 
data, we estimated how many people in the “multi-racial” category checked off “some 
other race” as one of their races, for Hispanics and non-Hispanics separately. In each 
age-sex-race-block-level datum, we added those people to “other race” category to 
create the re-distribution pool, analogously to the method implemented by Census 
while creating MARS data (see U.S. Census Bureau, 2002a, Table 1, below). Second, 
based on the national re-allocation fractions for Hispanics and non-Hispanics (derived 
from the MARS data), we assigned the “Other” race into the four races of interest and 
“multi-race”.  

After the assignment of the “Other” race category, we then assigned “multi-racial” 
category to the four racial categories, using state fractions of these races in each age-
sex-race-block- level datum. 
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J.1.2.2  County-Level Forecasts  

Woods & Poole (2015) developed county-level forecasts for each year from 2000 
through 2050, by age and gender for non-Hispanic White, African-American, Asian-
American, and Native-American and for all Hispanics. The detailed documentation can 
be found at http://www. woodsandpoole.com/pdfs/CED15.pdf. As discussed below, the 
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adjustments necessary to prepare the data for use in BenMAP are relatively 
straightforward.  

For each non-Hispanic subset of the population and each year from 2000-2050, we 
divided the Woods and Poole population for that year by the Woods and Poole 
population for that subset in 2010. These serve as the growth coefficients for the non-
Hispanic subsets of each race. We used a similar calculation to determine the growth 
rates for the Hispanic population. We assume that each Hispanic race grows at the same 
rate, and use these growth rates for the Hispanic subsets of each race.42 

Matching Age Groups Used in BenMAP  

There are 86 age groups, so it is a simple matter of aggregating age groups to match the 
19 used in BenMAP.  

Matching Counties Used in U.S. Census  

The county geographic boundaries used by Woods & Poole are somewhat more 
aggregated than the county definitions used in the 2010 Census and those in BenMAP, 
and the FIPS codes used by Woods and Poole are not always the standard codes used in 
the Census. To make the Woods and Poole data consistent with the county definitions in 
BenMAP, we disaggregated the Woods and Poole data and changed some of the FIPS 
codes to match the U.S. Census.  

Calculating Growth Ratios with Zero Population in 2010  

There are a small number of cases where the 2010 county population for a specific 
demographic group is zero, so the ratio of any future year to the year 2010 data is 
undefined. In these relatively rare cases, we prepared statewide and national totals and 
used ratios at the higher levels of geographic aggregation when the more local ratios 
caused divide-by-zero errors.  

J.1.3  PopGrid  

If the geographic center of a Census block falls within a population grid-cell, PopGrid 
assigns the block population to this particular population grid-cell. Note that the grid-
cells in an air quality model, such as CMAQ, may cross multiple county boundaries. 
PopGrid keeps track of the total number of people in each race-ethnic group by county 
within a particular population grid-cell. Of course, when the population grid-cell is for 
U.S. counties, then there is only a single county associated with the population grid-cell. 
However, with air quality models, there can clearly be multiple counties in a population 
grid-cell.  

 
42 Previous versions of the BenMAP-CE program used a different methodology whereby population estimates 
for 2000 – 2009 were adjusted using the ratio of 2000 Woods & Poole estimated population and 2000 Census 
population. 
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Keeping track of the total number of people in a county is necessary when forecasting 
population, as the population forecast for a given grid cell is equal to the year 2010 
population estimate from the Census Bureau multiplied by the ratio of future-year to 
year 2010 county population estimates from Woods & Poole. BenMAP assumes that all 
age-gender groups within a given race-ethnic group have the same geographic 
distribution.  

J.1.3.1  How to Use PopGrid  

After installing PopGrid, double-click on the PopGrid executable “PopGrid4.exe.” The 
following screen will appear: 

 

The Census Data Files Directory box points PopGrid to where the block data are 
located that PopGrid uses. Make sure that the files in this directory are unzipped. This 
data folder should look something like the following:  
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The Result Population File box provides the path and the name of the file that you want to 
create. In the example above, PopGrid is being used to estimate population for the intersection 
of air basins and counties in California (CA_AirBasin_by_County).  

Click on the Step 2: Shape File tab. Choose the shapefile that you want to use. The example 
for air basins and counties in California looks as follows:  
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After choosing your shapefile, which must contain a column/row index, go to the Step 
3: Run tab, which should look as follows:  
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Click Run. PopGrid will now begin processing. It can take a very long time to run. When 
PopGrid has finished running, check the log file. The log file notes the start time, the 
files that PopGrid used, and the end time. Also, at the very end of the log file, PopGrid notes 
the number of people that PopGrid assigned to your grid definition (“Population covered 
by grid”) and the number of people that PopGrid determined are outside of your grid 
definition (“Population outside grid”).  
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J.1.3.2  PopGrid Output  

PopGrid generates two files. One file has the number of people in each grid cell for each 
of the 304 race-ethnicity-gender-age demographic groups available in PopGrid. Table J-
5 presents an example of what the population file looks like from PopGrid. The Row and 
Column uniquely identify each grid cell. Note that the Race, Ethnicity, Gender and 
AgeRange variables are precisely defined (see section on loading population data 
LoadData_Setups_Population). 

Table J-5.  Population File Fragment from PopGrid 

Row Column Year Population Race Ethnicity Gender AgeRange 
58 81 2000 1.54 WHITE HISPANIC MALE 0TO0 
58 81 2000 0.03 BLACK HISPANIC MALE 0TO0 
58 81 2000 0.01 NATAMER HISPANIC MALE 0TO0 
58 81 2000 0.01 ASIAN HISPANIC MALE 0TO0 
58 81 2000 4.86 WHITE HISPANIC MALE 1TO4 
58 81 2000 0.12 BLACK HISPANIC MALE 1TO4 
58 81 2000 0.03 NATAMER HISPANIC MALE 1TO4 
58 81 2000 0.03 ASIAN HISPANIC MALE 1TO4 
58 81 2000 6.79 WHITE HISPANIC MALE 5TO9 
58 81 2000 0.21 BLACK HISPANIC MALE 5TO9 
58 81 2000 0.05 NATAMER HISPANIC MALE 5TO9 
58 81 2000 0.05 ASIAN HISPANIC MALE 5TO9 
58 81 2000 0.90 WHITE HISPANIC MALE 10TO14 
58 81 2000 0.04 BLACK HISPANIC MALE 10TO14 
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Row Column Year Population Race Ethnicity Gender AgeRange 
58 81 2000 0.01 NATAMER HISPANIC MALE 10TO14 
58 81 2000 0.01 ASIAN HISPANIC MALE 10TO14 
58 81 2000 3.44 WHITE HISPANIC MALE 15TO19 
58 81 2000 0.15 BLACK HISPANIC MALE 15TO19 
58 81 2000 0.04 NATAMER HISPANIC MALE 15TO19 
58 81 2000 0.04 ASIAN HISPANIC MALE 15TO19 
58 81 2000 1.49 WHITE HISPANIC MALE 20TO24 
58 81 2000 0.06 BLACK HISPANIC MALE 20TO24 
58 81 2000 0.02 NATAMER HISPANIC MALE 20TO24 
58 81 2000 0.03 ASIAN HISPANIC MALE 20TO24 
58 81 2000 1.93 WHITE HISPANIC MALE 25TO29 
58 81 2000 0.04 BLACK HISPANIC MALE 25TO29 
58 81 2000 0.01 NATAMER HISPANIC MALE 25TO29 
58 81 2000 0.01 ASIAN HISPANIC MALE 25TO29 
58 81 2000 1.87 WHITE HISPANIC MALE 30TO34 
58 81 2000 0.08 BLACK HISPANIC MALE 30TO34 

 

PopGrid generates a second file that keeps track of the fraction of the total population in 
each of the eight race-ethnic groups that comes from each county in the United States. 
Table J-5 presents a sample. The SourceCol and SourceRow uniquely identify each 
county, and the TargetCol and TargetRow uniquely identify each grid cell. The Value 
variable gives the fraction of the total population in the grid cell for a given race-ethnic 
group that comes from the “source” county.  

When a grid cell lies completely within a county, then the fraction will be 1. When a grid 
cell is in more than county, then the sum of the fractions across the counties for a given 
race-ethnic group must sum to one. In Table J-6, you can see that for grid cell 
(TargetCol=123, TargetRow=18) that the fraction of Asian Non-Hispanic coming from 
county (SourceCol=16, SourceRow=71) is 0.49 and for county (SourceCol=49, 
SourceRow=3) the fraction is 0.51. In this case, about half the population of Asian Non-
Hispanics comes from each of the two counties. In the case of Black Hispanics, the 
fraction from county (SourceCol=16, SourceRow=71) is only 0.12, with most Black 
Hispanics in this grid cell coming from county (SourceCol=49, SourceRow=3).  

Table J-6. Population-Weight File Fragment from PopGrid  

SourceCol SourceRow TargetCol TargetRow Race Ethnicity Value Year 
16 71 123 18 ASIAN NON-

HISPANIC 
0.49 2000 

16 71 123 18 ASIAN HISPANIC 0.21 2000 
16 71 123 18 BLACK NON-

HISPANIC 
0.49 2000 

16 71 123 18 BLACK HISPANIC 0.12 2000 
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SourceCol SourceRow TargetCol TargetRow Race Ethnicity Value Year 
16 71 123 18 NATAMER NON-

HISPANIC 
0.98 2000 

16 71 123 18 NATAMER HISPANIC 0.43 2000 
16 71 123 18 WHITE NON-

HISPANIC 
0.23 2000 

16 71 123 18 WHITE HISPANIC 0.06 2000 
49 3 123 18 ASIAN NON-

HISPANIC 
0.51 2000 

49 3 123 18 ASIAN HISPANIC 0.79 2000 
49 3 123 18 BLACK NON-

HISPANIC 
0.51 2000 

49 3 123 18 BLACK HISPANIC 0.88 2000 
49 3 123 18 NATAMER NON-

HISPANIC 
0.02 2000 

49 3 123 18 NATAMER HISPANIC 0.57 2000 
49 3 123 18 WHITE NON-

HISPANIC 
0.77 2000 

49 3 123 18 WHITE HISPANIC 0.94 2000 
6 23 45 1 ASIAN NON-

HISPANIC 
0.00 2000 

6 23 45 1 ASIAN HISPANIC 0.00 2000 
6 23 45 1 BLACK NON-

HISPANIC 
0.00 2000 

6 23 45 1 BLACK HISPANIC 0.00 2000 
6 23 45 1 NATAMER NON-

HISPANIC 
1.00 2000 

6 23 45 1 NATAMER HISPANIC 1.00 2000 
6 23 45 1 WHITE NON-

HISPANIC 
1.00 2000 

6 23 45 1 WHITE HISPANIC 1.00 2000 
6 23 45 2 ASIAN NON-

HISPANIC 
1.00 2000 

6 23 45 2 ASIAN HISPANIC 1.00 2000 
6 23 45 2 BLACK NON-

HISPANIC 
1.00 2000 

6 23 45 2 BLACK HISPANIC 1.00 2000 
6 23 45 2 NATAMER NON-

HISPANIC 
1.00 2000 

6 23 45 2 NATAMER HISPANIC 1.00 2000 
6 23 45 2 WHITE NON-

HISPANIC 
1.00 2000 

6 23 45 2 WHITE HISPANIC 1.00 2000 
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J.2 Monitor Data in U.S. Setup 
BenMAP-ready data files were created from 2000 through 2018, as reported to the U.S. 
Environmental Protection Agency’s (EPA) Air Quality System (AQS) for PM2.5 and ozone. 
Table J-7 summarizes the data sources and vintage of the processed data. 

Table J-7. Underlying Data Sources for BenMAP Air Quality Data File 

Pollutant 

AQS 
Parameter 

Code Year Data Source 
PM2.5 88101 2000-2018 

https://www.epa.gov/aqs 
Ozone 44201 2000-2018 

 
J.2.1 Data Processing 

IEc developed an R script to process the raw AQS data into formatted BenMAP-CE 
monitor files. The R script completes three major tasks: 

1. Padding the raw data to generate a full, daily time series for each pollutant (daily 24 
hour average values for PM2.5 and daily 8-hour maximum average values for ozone), 

2. Converting the data from a long to a wide format, and 
3. Adjusting and reformatting the data fields to match BenMAP-CE’s expected format 

for monitor datasets.   
 
For daily data, BenMAP-CE expects the monitor data input file to contain a comma-
separated string of 365 air quality values—one value for each day in the calendar year.  
Within this string, any missing values are represented by a period (“.”). In contrast, the 
AQS data only contain records for dates with measured air quality values or calculated 
pollutant metrics (24 hour average concentrations of PM2.5 or 8-hour maximum average 
concentrations for ozone). The raw AQS data are padded so that there is ultimately a 
row for every day in the year for each monitor, with periods inserted by the R code for 
every missing value. During this process, the R script also cleans up the raw data by 
removing any monitors located in Canada, removing any daily values with an 
Observation Percent less than 75%, and limiting values in the “Event Type” field to 
“None”.43  In addition, PM2.5 data are limited to values with a “Sample Duration” of “24 
HOUR” or “24-HR BLK AVG”.44 

 
43 The Observation Percent field describes the volume of hourly data used to calculate each daily metric in the 
pre-generated AQS data files. Based on guidance provided by AQS staff, IEc limited values to those calculated 
with at least 75% of the underlying measurements. The “Event Type” field identifies days that may have been 
impacted by exceptional events, such as wildfires. Limiting the data to “Event Type” values of “None” limits 
the data included in BenMAP-CE to those days representing ambient air quality. 
44 For PM2.5 these values are taken from the “Arithmetic Mean” field of raw AQS data, while for O3 they are 
taken from the “1st Max” field, based on guidance from AQS staff. The “1st Max” field is converted from ppm to 
ppb; BenMAP uses ppb as the unit for ozone concentrations. 

https://www.epa.gov/aqs
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Once the dataset has been expanded to the correct volume, the R script then casts it 
from a long format to a wide format. This means that the R script takes the 365 rows 
associated with a monitor and converts them to a single comma-separated string 
needed for the BenMAP-CE “Values” field.   

 Data are reported in µg/m3 for PM2.5, and ppb for ozone.   

J.2.2 Output Files 

Table H-8 lists the number of monitors by pollutant and year, represented in the 
resulting BenMAP-ready data files. The AQS Parameter Code for PM2.5 is 88101 and for Ozone is 
44201. 

Table J-8. Number of Monitors by Pollutant and Year Included in BenMAP  

Year Number of Monitors by Year 

PM2.5 Ozone 

2000 1,316 1,144 

2001 1,355 1,190 

2002 1,397 1,195 

2003 1,421 1,213 

2004 1,253 1,208 

2005 1,285 1,198 

2006 1,230 1,205 

2007 1,191 1,212 

2008 1,196 1,215 

2009 1,273 1,214 

2010 1,227 1,228 

2011 1,137 1,283 

2012 1,158 1,285 

2013 1,190 1,293 

2014 1,315 1,287 

2015 1,373 1,276 

2016 1,559 1,292 

2017 1,463 1,287 

2018 1,494 1,275 

 

J.3 Demographic Datasets in U.S. Setup 
The U.S. setup includes data on household size, educational attainment, poverty status, 
unemployment, health insurance coverage, occupational status, linguistic isolation, and 
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redlining. These datasets are included in the EPA Standard Variables dataset under 
Variable Datasets. We describe the data sources and processing methodology for each 
dataset below. County-level datasets were generated for 3,109 counties in the 
contiguous United States.45 Census tract level datasets were generated for 72,538 
census tracts in the contiguous United States.  

J.3.1 Household Size  

County-Level 

To generate average household size for each county (termed “averagehhsize”), we 
utilize ACS 5-year estimates for 2012 to 2016. Average household size was provided by 
ACS at the county level for all counties except for two, for which data were not 
available.46 For these counties, we applied the state level average household size.  

J.3.2 Educational Attainment 

County-Level 

We use data from the ACS to provide county-level summaries of educational attainment. 
These data represent 5-year average ACS estimates from 2015 to 2019 and span two 
broad education categories: no high school diploma (termed “no_hs_degree”) and high 
school diploma and above (termed “hs_degree_plus”). The latter category includes 
individuals with a high school diploma (or equivalency), some college, college degree, 
or post-graduate degree. 

For both education groups (with/without HS diploma), we estimate the fraction of the 
total county population (ages 25 years and above) in each education group. Thus, the 
two estimates sum to one for each county. 

All estimates were generated at the county level for 3,109 counties in the contiguous 
United States. For each estimate, we generate a coefficient of variation (CV) equal to the 
ratio of the standard error to the point estimate. For counties with a CV greater than 
0.3, we impute the county-level estimate with a state-level estimate following Census 
guidance, which defines any estimate with a CV greater than 0.3 as low reliability and to 
be used with extreme caution (King et al. 2015). 

Tract-Level 

 
45In 2013, Bedford city, Virginia was removed from the list of counties in the U.S. Due to BenMAP’s grid 
definition, we continue to include Bedford city (FIPS code 51515) in this update. We impute the value for this 
county using the value for the county with which it was combined (Bedford County, FIPS code 51019). In 
2015, Oglala Lakota County, South Dakota (46102) changed name and code from Shannon County (46113). 
To match BenMAP’s grid definition, we use the old FIPS code (46113) for this county. For further information, 
please see the Census website: https://www.census.gov/programs-surveys/geography/technical-
documentation/county-changes.html  
46 The two counties without data were Shannon County, South Dakota (FIPS Code 46113) and Bedford, 
Virginia (FIPS Code 51515). 
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We use data from the ACS to provide tract-level summaries of educational attainment. 
These data represent 5-year average ACS estimates from 2015 to 2019 and span the 
same two education categories as county-level demographic variables: no high school 
diploma (termed “no_hs_degree_tract”) and high school diploma (or equivalency) and 
above (termed “hs_degree_plus_tract”).  

For both education groups (with/without HS diploma), we estimate the fraction of the 
total tract population (ages 25 years and above) in each education group. Thus, the two 
estimates sum to one for each tract. 

All estimates were generated at the tract level for 72,538 tracts in the contiguous 
United States. For each estimate, we generate a coefficient of variation (CV) equal to the 
ratio of the standard error to the point estimate. For tracts with a CV greater than 0.3, 
we impute the tract-level estimate with a county-level estimate following Census 
guidance, which defines any estimate with a CV greater than 0.3 as low reliability and to 
be used with extreme caution (King et al. 2015). In cases of counties with a CV greater 
than 0.3, we further impute to the state-level. 

J.3.3 Poverty Status 

County-Level 

To determine the poverty status at the county level, we utilize ACS 5-year estimates 
from 2015 to 2019. The resulting datasets represent the fraction of the total population 
in the county that falls below the federal poverty line (termed “below_poverty_line”) 
and the fraction of the population that falls above the poverty line (termed 
“above_poverty_line”). The EPA Standard Variables dataset also includes two variables 
representing the fraction of the county-level population below and above 200% of the 
poverty line (termed “below_2x_poverty_line” and “above_2x_poverty_line”).  

We followed the same imputation procedures described in section J.3.2 to process 
poverty variables. 

Tract-Level 

To determine the poverty status at the tract level, we utilize ACS 5-year estimates from 
2015 to 2019. The resulting datasets represent the fraction of the total population in 
the tract that falls below the federal poverty line (termed “below_poverty_line_tract”) 
and the fraction of the population that falls above the poverty line (termed 
“above_poverty_line_tract”). The EPA Standard Variables dataset also includes two 
variables representing the fraction of the tract-level population below and above 200% 
of the poverty line (termed “below_2x_poverty_line_tract” and 
“above_2x_poverty_line_tract”).  

We followed the same imputation procedures described in section J.3.2 to process 
poverty variables. 
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J.3.4 Unemployment Rates 

County-Level 

BenMAP includes county-level employment variables representing average rates from 
2017 to 2021 (termed “adj_employment_rate” and “adj_unemployment_rate”). 
Importantly, the employment variables are adjusted for use in BenMAP to use total 
population as the denominator rather than labor force. This allows users to multiply the 
rates by the total population (in a health impact function) to assess populations that are 
(a) employed, (b) unemployed, and (c) not part of the labor force (e.g., retirees, 
students, discouraged workers).  

County-level unemployment rates are from the Bureau of Labor Statistics. We adjusted 
these rates using county-level population estimates from the U.S. Census Bureau from 
2017 to 2021. The calculations were done for each year individually and then averaged 
together to create a five-year average. The value calculated in BenMAP represents the 
average rate across all months within this period. The rate of residents not in the labor 
force (termed “not_in_labor_force_rate”) was calculated by subtracting the labor force 
from the total population and then dividing the remainder by the total population.  

BenMAP also includes a previous version of the unemployment variable termed 
“unemployment_rate_2017_18”. In this dataset we use monthly county-level 
unemployment rates from the Bureau of Labor Statistics for the period from February 
2017 to February 2018. The value calculated in BenMAP-CE represents the average 
employment rate across all months within this time period. The unemployment rate 
was calculated by dividing the number of unemployed workers in each county by the 
county’s total labor force. We note that the labor force does not include discouraged 
workers, people who have permanently left the labor force (e.g., retirees), and 
individuals who have not yet entered the labor force. Thus, the rates do not reflect the 
fraction of the population in BenMAP-CE that is not employed. We impute values for 
two counties using state unemployment rates, calculated by taking the total number of 
unemployed individuals within the state for each month, dividing by the total labor 
force within the state for the month, and averaging over all months. 

J.3.5 Health Insurance 

County-Level 

We use 2016 data from the Small Area Health Insurance Estimates (SAHIE) collected by 
the U.S. Census Bureau to calculate the percentage of individuals without health 
insurance in each county. Total numbers of individuals with and without health 
insurance by county were downloaded for the year 2016. The SAHIE data provides the 
number of individuals with and without health insurance by county, disaggregated into 
three age groups: 18 to 65, 40 to 65, and under 65. Using these data, we calculated the 
percent of people uninsured by county for the age groups 1 to 17, 18-39, 40-64, and 
under 65 (termed “pct_uninsured1_17”, “pct_uninsured18_39”, “pct_uninsured40_64”, 
and “pct_uninsuredUnder_65”). As an example of this calculation, we subtracted the 18 
to 65 uninsured population from the under 65 uninsured population to generate the 1 



 Appendix J: Population & Other Data in U.S. Setup 

BenMAP-CE User’s Manual Appendices March 2023 
J-20 

to 17 uninsured population. This value is then divided by the total 1 to 17 population 
(derived in the same manner) to estimate the uninsured rate. 

There were two identical rows of data for the Washington, D.C. area (FIPS Code 11000 
and 11001); we use FIPS code 11001.  

We also use data from SAHIE collected by the U.S. Census Bureau from 2015 to 2019 to 
calculate the percentage of all individuals with and without health insurance in each 
county (termed “insured_rate” and “uninsured_rate”). The SAHIE data provides the 
number of individuals with and without health insurance by county. Calculations were 
done for each year individually and then averaged together to create a five-year 
average. 

J.3.6 Blue Collar Workers 

County-Level 

We use five-year estimates (2012-2016) from the ACS to estimate the fraction of each 
county’s labor force employed in white collar and blue collar occupations. The dataset 
includes the number of employed individuals over 16 that work within five occupation 
categories. We assign each of these five occupations to either the blue collar or white 
collar designation, as shown in Table J-9. 

Table J-9. Mapping Occupations to Blue Collar and White Collar Designations 

Occupation Designation 

Management, business, science and arts White collar 

Service White collar  

Sales and office White collar 

Natural resources, construction and maintenance Blue collar 

Production, transportation and material moving Blue collar 

We calculate the fraction of each county in blue collar professions by dividing the total 
number of individuals employed in blue collar jobs by the total number of employed 
individuals within each county (termed “pct_BlueCollar”), with the blue collar and white 
collar worker fractions in each county adding up to 100%.  

 
J.3.7 Linguistic Isolation 

County-Level 

We use 5-year ACS estimates from 2015-2019 to estimate linguistic isolation at the 
county level. The resulting datasets represent the fraction of the total population age 5 
and over in the county that are linguistically isolated (defined by speaking English “less 
than very well”, termed “english_less_than_verywell”) and the fraction of the population 
age 5 and over that speak English “very well or better” (termed 
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“english_verywell_or_better”).  This definition follows as closely as possible the 
definition of linguistic isolation used in EJ Screen and in other regulatory analyses.47  
Additionally, we produced an alternative definition in which the linguistically isolated 
population is more restrictive, i.e., those who speak English less than “well” (termed 
“english_less_than_well”), and inversely, those who speak English “well or better” 
(termed “english_well_or_better”).  

Instead of imputing in cases of uncertainty, we generate county-level point estimates of 
linguistic isolation in an effort to prioritize geographic specificity in these estimates. 

Tract-Level 

We use 5-year ACS estimates from 2015-2019 to estimate linguistic isolation at the 
tract level. The resulting datasets represent the fraction of the total population age 5 
and over in the tract that are linguistically isolated (defined by speaking English “less 
than very well”, termed “english_less_than_verywell_tract”) and the fraction of the 
population age 5 and over that speak English “very well or better” (termed 
“english_verywell_or_better_tract”).  This definition follows as closely as possible the 
definition of linguistic isolation used in EJ Screen and in other regulatory analyses.48  
Additionally, we produced an alternative definition in which the linguistically isolated 
population is more restrictive, i.e., those who speak English less than “well” (termed 
“english_less_than_well_tract”), and inversely, those who speak English “well or better” 
(termed “english_well_or_better_tract”).  

Instead of imputing in cases of uncertainty, we generate tract-level point estimates of 
linguistic isolation in an effort to prioritize geographic specificity in these estimates. 

J.3.8 Redlining 

Tract-Level 

We use graded census tracts developed by Noelke et al., 2022 from digitized Home 
Owner’s Loan Corporation (HOLC) residential security maps overlaid onto 2010 Census 
tracts. Each census tract is classified as being covered by “Mainly A,” “Mainly B,” “Mainly 
C,” and “Mainly D” grading, corresponding to coverage of different hazard ratings from 
original HOLC maps. The dataset covers 14,818 census tracts, since HOLC maps only 
covered certain urban areas. This dataset was adapted to cover 72,538 census tracts for 
use in BenMAP, with the remaining census tracts categorized as “redlined_na” since 
they were not covered by HOLC grading. Census tracts labeled as “Mainly D” were 
categorized as “redlined” and census tracts that were mainly A-C were categorized as 
“not_redlined.”  

 
47 EJ screen defines linguistic isolation by households in which all members age 14 years and over speak a 
non-English language and also speak English less than “very well” (have difficulty with English).   
48 EJ screen defines linguistic isolation by households in which all members age 14 years and over speak a 
non-English language and also speak English less than “very well” (have difficulty with English).   

https://data.diversitydatakids.org/dataset/holc_census_tracts-home-owner-loan-corporation--holc--neighborhood-grades-for-us-census-tracts/resource/848dbd07-6913-4757-85bc-fc0c37f5c6fb
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Appendix K. Uncertainty & Pooling  

This Appendix discusses the treatment of uncertainty in BenMAP, both for incidence 
changes and associated dollar benefits. Some background is then given on pooling 
methodology. Finally, the mechanics of the various Pooling Methods available in 
BenMAP are discussed in detail, including Subjective Weight based pooling, Fixed 
Effects pooling, Random / Fixed Effects pooling, and independent and dependent Sum 
and Subtraction.  

K.1  Uncertainty  
Although there are several sources of uncertainty affecting estimates of incidence 
changes and associated benefits, the sources of uncertainty that are most readily 
quantifiable in benefit analyses are uncertainty surrounding the health impact 
functions and uncertainty surrounding unit dollar values. The total dollar benefit 
associated with a given endpoint group depends on how much the endpoint group will 
change in the control scenario (e.g., how many premature deaths will be avoided) and 
how much each unit of change is worth (e.g., how much a statistical death avoided is 
worth).  

Both the uncertainty about the incidence changes and uncertainty about unit dollar 
values can be characterized by distributions. Each “uncertainty distribution” 
characterizes our beliefs about what the true value of an unknown (e.g., the true change 
in incidence of a given health effect) is likely to be, based on the available information 
from relevant studies. Although such an “uncertainty distribution” is not formally a 
Bayesian posterior distribution, it is very similar in concept and function (see, for 
example, the discussion of the Bayesian approach in Kennedy 1990, pp. 168-172). 
Unlike a sampling distribution (which describes the possible values that an estimator of 
an unknown value might take on), this uncertainty distribution describes our beliefs 
about what values the unknown value itself might be.  

Such uncertainty distributions can be constructed for each underlying unknown (such 
as a particular pollutant coefficient for a particular location) or for a function of several 
underlying unknowns (such as the total dollar benefit of a regulation). In either case, an 
uncertainty distribution is a characterization of our beliefs about what the unknown (or 
the function of unknowns) is likely to be, based on all the available relevant 
information. Uncertainty statements based on such distributions are typically 
expressed as 90 percent credible intervals. This is the interval from the fifth percentile 
point of the uncertainty distribution to the ninety-fifth percentile point. The 90 percent 
credible interval is a “credible range” within which, according to the available 
information (embodied in the uncertainty distribution of possible values), we believe 
the true value to lie with 90 percent probability. The uncertainty surrounding both 
incidence estimates and dollar benefits estimates can be characterized quantitatively in 
BenMAP. Each is described separately below.  
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K.1.1 Characterization of Uncertainty Surrounding Incidence Changes  

To calculate point estimates of the changes in incidence of a given adverse health effect 
associated with a given set of air quality changes, BenMAP performs a series of 
calculations at each grid-cell. First, it accesses the health impact functions needed for 
the analysis, and then it accesses any data needed by the health impact functions. 
Typically, these include the grid-cell population, the change in population exposure at 
the grid-cell, and the appropriate baseline incidence rate. BenMAP then calculates the 
change in incidence of adverse health effects for each selected health impact function. 
The resulting incidence change is stored, and BenMAP proceeds to the next grid-cell, 
where the above process is repeated.  

In Latin Hypercube mode, BenMAP reflects the uncertainty surrounding estimated 
incidence changes (resulting from the sampling uncertainty surrounding the pollutant 
coefficients in the health impact functions used) by producing a distribution of possible 
incidence changes rather than a single point estimate. To do this, it uses the distribution 
(Dist Beta) associated with the pollutant coefficient (Beta, or β), and potentially the 
point estimate (Beta) and two parameters (P1Beta, P2Beta). Typically, pollutant 
coefficients are normally distributed, with mean Beta and standard deviation P1Beta.  

BenMAP uses an N-point Latin Hypercube to represent the underlying distribution of β 
and to create a corresponding distribution of incidence changes in each population grid 
cell, where N is specified by you. The Latin Hypercube method represents an underlying 
distribution by N percentile points of the distribution, where the nth percentile point is 
equal to: 

 

The Latin Hypercube method is used to enhance computer processing efficiency. It is a 
sampling method that divides a probability distribution into intervals of equal probability, with 
an assumption value for each interval assigned according to the interval’s probability distribution. 
Compared with conventional Monte Carlo sampling, the Latin Hypercube approach is 
more precise over a fewer number of trials because the distribution is sampled in a 
more even, consistent manner (Decisioneering, 1996, pp. 104-105).  

Suppose, for example, that you elect to use a 20-point Latin Hypercube. BenMAP would then 
represent the distribution of β by 20 percentile points, specifically the 2.5th, 7.5th, ..., 97.5th. To do 
this, the inverse cumulative distribution function specified by the distribution of β is called with 
the input probability equal to each the 20 percentile points. BenMAP then generates an 
estimate of the incidence change in a grid-cell for each of these values of β, resulting in a 
distribution of N incidence changes. This distribution is stored, and BenMAP proceeds to the 
next population grid-cell, where the process is repeated.  

NN
n

2
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K.1.2 Characterization of Uncertainty Surrounding Dollar Benefits 

The uncertainty distribution of the dollar benefits associated with a given health or 
welfare effect is derived from the two underlying uncertainty distributions - the 
distribution of the change in incidence of the effect (number of cases avoided) and the 
distribution of the value of a case avoided (the “unit value”). The derivation of the 
uncertainty distribution for incidence change is described above. The distributions used 
to characterize the uncertainty surrounding unit values are described in detail in the 
appendix on the Economic Value of Health Effects. As noted in that Appendix, a variety 
of distributions have been used to characterize the uncertainty of unit values, including 
uniform, triangular, normal, and Weibull.  

To represent the underlying distribution of uncertainty surrounding unit values, a 100-
point Latin Hypercube is generated in the same way described in the previous section for the 
distribution of β . That is, the unit value distribution is represented using the 0.5th, 1.5th, ..., and 
99.5th percentile values of its distribution.  

A distribution of the uncertainty surrounding the dollar benefits associated with a given 
endpoint is then derived from Latin Hypercube values generated to represent the change in 
incidence and the Latin Hypercube values generated to represent the unit value distribution. To 
derive this new distribution, each of the 100 unit values is multiplied by each of the N incidence 
change values, yielding a set of 100 * N dollar benefits. These values are sorted low to high and 
binned down to a final distribution of N dollar benefit values.  

K.2 Pooling 
There is often more than one study that has estimated a health impact function for a 
given pollutant-health endpoint combination. Each study provides an estimate of the 
pollutant coefficient, β, along with a measure of the uncertainty of the estimate. Because 
uncertainty decreases as sample size increases, combining data sets is expected to yield more 
reliable estimates of β, and therefore more reliable estimates of the incidence change predicted 
using β. Combining data from several comparable studies in order to analyze them together is 
often referred to as meta-analysis.  

For a number of reasons, including data confidentiality, it is often impractical or 
impossible to combine the original data sets. Combining the results of studies in order to 
produce better estimates of β provides a second-best but still valuable way to synthesize 
information . This is referred to as pooling. Pooling β‘s requires that all of the studies contributing 
estimates of β use the same functional form for the health impact function. That is, the β‘s must be 
measuring the same thing.  

It is also possible to pool the study-specific estimates of incidence change derived from 
the health impact functions, instead of pooling the underlying β‘s themselves. For a variety 
of reasons, this is often possible when it is not feasible to pool the underlying β‘s. For example, if 
one study is log-linear and another is linear, we could not pool the β‘s because they are not 
different estimates of a coefficient in the same health impact function, but are instead estimates of 
coefficients in different health impact functions. We can, however, calculate the incidence 
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change predicted by each health impact function (for a given change in pollutant concentration 
and, for the log-linear function, a given baseline incidence rate), and pool these incidence 
changes. BenMAP allows the pooling of incidence changes predicted by several studies for 
the same pollutant-health endpoint group combination. It also allows the pooling of the 
corresponding study-specific estimates of monetary benefits.  

As with estimates based on only a single study, BenMAP allows you to characterize the 
uncertainty surrounding pooled estimates of incidence change and/or monetary benefit. To do 
this, BenMAP pools the study-specific distributions of incidence changes (or monetary 
benefit) to derive a pooled distribution. This pooled distribution incorporates information 
from all the studies used in the pooling procedure.  

K.2.1 Weights Used for Pooling 

The relative contribution of any one study in the pooling process depends on the weight 
assigned to that study. A key component of the pooling process, then, is the 
determination of the weight given to each study. There are various methods that can be 
used to assign weights to studies. Below we discuss the possible weighting schemes 
that are available in BenMAP. 

K.2.1.1 Subjective Weights 

BenMAP allows you the option of specifying the weights to be used. Suppose, for 
example, you want to simply average all study-specific results. You would then assign a 
weight of 1/N to each of the N study-specific distributions that are to be pooled. Note 
that subjective weights are limited to two decimal places, and are normalized to sum to 
one, if they do not already sum to one. 

K.2.1.2 Automatically Generated Weights 

A simple average has the advantage of simplicity but the disadvantage of not taking into 
account the uncertainty of each of the estimates. Estimates with great uncertainty 
surrounding them are given the same weight as estimates with very little uncertainty. A 
common method for weighting estimates involves using their variances. Variance takes into 
account both the consistency of data and the sample size used to obtain the estimate, two 
key factors that influence the reliability of results. BenMAP has two methods of 
automatically generating pooling weights using the variances of the input distributions - 
Fixed Effects Pooling and Random / Fixed Effects Pooling.  

The discussion of these two weighting schemes is first presented in terms of pooling the 
pollutant coefficients (the β‘s), because that most closely matches the discussion of the 
method for pooling study results as it was originally presented by DerSimonian and 
Laird. We then give an overview of the analogous weighting process used within 
BenMAP to generate weights for incidence changes rather than β‘s.  

K.2.1.3 Fixed-Effect Weights 

The fixed effects model assumes that there is a single true concentration-response relationship 
and therefore a single true value for the parameter β that applies everywhere. Differences 
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among β‘s reported by different studies are therefore simply the result of sampling 
error. That is, each reported β is an estimate of the same underlying parameter. The 
certainty of an estimate is reflected in its variance (the larger the variance, the less certain 
the estimate). Fixed effects pooling therefore weights each estimate under consideration in 
proportion to the inverse of its variance.  

Suppose there are n studies, with the ith study providing an estimate βi with variance vi (I = 
1, ..., n). Let  

 

denote the sum of the inverse variances. Then the weight, wi , given to the ith estimate, 
βi , is:  

 

This means that estimates with small variances (i.e., estimates with relatively little 
uncertainty surrounding them) receive large weights, and those with large variances 
receive small weights. The estimate produced by pooling based on a fixed effects model, then, 
is just a weighted average of the estimates from the studies being considered, with the weights 
as defined above.  

That is: 

 

The variance associated with this pooled estimate is the inverse of the sum of the 
inverse variances:  

 

Table K-1 shows the relevant calculations for this pooling for three sample studies.  

Table K-1. Example of Fixed Effects Model Calculations 

Study Βi Vi 1/vi Wi Wi*βi 
1 0.75 0.1225 8.16 0.016 0.012 
2 1.25 0.0025 400 0.787 0.984 
3 1.00 0.0100 100 0.197 0.197 

Sum   ?=508.16 ?=1.000 ?=1.193 
 

∑= ,1

iv
S

.
1

S
v

w i
i =

iife w ββ ×= ∑

∑
=

i
fe v

v
1
1



 Appendix K: Uncertainty & Pooling 

BenMAP-CE User’s Manual Appendices March 2023 
K-6 

The sum of weighted contributions in the last column is the pooled estimate of β based 
on the fixed effects model. This estimate (1.193) is considerably closer to the estimate 
from study 2 (1.25) than is the estimate (1.0) that simply averages the study estimates. 
This reflects the fact that the estimate from study 2 has a much smaller variance than 
the estimates from the other two studies and is therefore more heavily weighted in the 
pooling.  

The variance of the pooled estimate, vfe, is the inverse of the sum of the variances, or 
0.00197. (The sums of the βi and vi are not shown, since they are of no importance. The 
sum of the 1/vi is S, used to calculate the weights. The sum of the weights, wi, i=1, ..., n, 
is 1.0, as expected.)  

K.2.1.4  Random- / Fixed-Effect Weights  

An alternative to the fixed effects model is the random effects model, which allows the 
possibility that the estimates βi from the different studies may in fact be estimates of 
different parameters, rather than just different estimates of a single underlying 
parameter. In studies of the effects of PM10 on mortality, for example, if the composition 
of PM10 varies among study locations the underlying relationship between mortality 
and PM10 may be different from one study location to another. For example, fine 
particles make up a greater fraction of PM10 in Philadelphia than in El Paso. If fine 
particles are disproportionately responsible for mortality relative to coarse particles, 
then one would expect the true value of β in Philadelphia to be greater than the true 
value of β in El Paso. This would violate the assumption of the fixed effects model.  

The following procedure can test whether it is appropriate to base the pooling on the 
random effects model (vs. the fixed effects model):  

A test statistic, Qw, the weighted sum of squared differences of the separate study 
estimates from the pooled estimate based on the fixed effects model, is calculated as:  

 

Under the null hypothesis that there is a single underlying parameter, β, of which all the 
βi’s are estimates, Qw has a chi-squared distribution with n-1 degrees of freedom. 
(Recall that n is the number of studies in the meta-analysis.) If Qw is greater than the 
critical value corresponding to the desired confidence level, the null hypothesis is 
rejected. That is, in this case the evidence does not support the fixed effects model, and 
the random effects model is assumed, allowing the possibility that each study is 
estimating a different β. (BenMAP uses a five percent one-tailed test).  

The weights used in a pooling based on the random effects model must take into 
account not only the within-study variances (used in a meta-analysis based on the fixed 
effects model) but the between-study variance as well. These weights are calculated as 
follows:  
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Using Qw , the between-study variance, η2, is:  

 

It can be shown that the denominator is always positive. Therefore, if the numerator is 
negative (i.e., if Qw < n-1), then η2 is a negative number, and it is not possible to 
calculate a random effects estimate. In this case, however, the small value of Qw would 
presumably have led to accepting the null hypothesis described above, and the meta-
analysis would be based on the fixed effects model. The remaining discussion therefore 
assumes that η2 is positive.  

Given a value for η2 , the random effects estimate is calculated in almost the same way 
as the fixed effects estimate. However, the weights now incorporate both the within-
study variance (vi) and the between-study variance ( η2). Whereas the weights implied 
by the fixed effects model used only vi, the within-study variance, the weights implied 
by the random effects model use vi + η2.  

Let vi* = vi + η2. Then: 

 

 

The estimate produced by pooling based on the random effects model, then, is just a 
weighted average of the estimates from the studies being considered, with the weights 
as defined above. That is:  

 

The variance associated with this random effects pooled estimate is, as it was for the 
fixed effects pooled estimate, the inverse of the sum of the inverse variances:  

 

The weighting scheme used in a pooling based on the random effects model is basically 
the same as that used if a fixed effects model is assumed, but the variances used in the 
calculations are different. This is because a fixed effects model assumes that the 
variability among the estimates from different studies is due only to sampling error (i.e., 
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each study is thought of as representing just another sample from the same underlying 
population), while the random effects model assumes that there is not only sampling 
error associated with each study, but that there is also between-study variability -- each 
study is estimating a different underlying β. Therefore, the sum of the within- study 
variance and the between-study variance yields an overall variance estimate.  

Fixed Effects and Random / Fixed Effects Weighting to Pool Incidence Change 
Distributions and Dollar Benefit Distributions  

Weights can be derived for pooling incidence changes predicted by different studies, 
using either the fixed effects or the fixed / random effects model, in a way that is 
analogous to the derivation of weights for pooling the β‘s in the C-R functions. As 
described above, BenMAP generates a Latin Hypercube representation of the 
distribution of incidence change corresponding to each health impact function selected. 
The means of those study-specific Latin Hypercube distributions of incidence change 
are used in exactly the same way as the reported β‘s are used in the calculation of fixed 
effects and random effects weights described above. The variances of incidence change 
are used in the same way as the variances of the β‘s. The formulas above for calculating 
fixed effects weights, for testing the fixed effects hypothesis, and for calculating random 
effects weights can all be used by substituting the mean incidence change for the ith 
health impact function for βi and the variance of incidence change for the ith health 
impact function for vi.  

Similarly, weights can be derived for dollar benefit distributions. As described above, 
BenMAP generates a Latin Hypercube representation of the distribution of dollar 
benefits. The means of those Latin Hypercube distributions are used in exactly the same 
way as the reported β‘s are used in the calculation of fixed effects and random effects 
weights described above. The variances of dollar benefits are used in the same way as 
the variances of the β‘s. The formulas above for calculating fixed effects weights, for 
testing the fixed effects hypothesis, and for calculating random effects weights can all be 
used by substituting the mean dollar benefit change for the ith valuation for βi and the 
variance of dollar benefits for the ith valuation for vi.  

BenMAP always derives Fixed Effects and Random / Fixed Effects weights using 
nationally aggregated results, and uses those weights for pooling at each grid cell (or 
county, etc. if you choose to aggregate results prior to pooling). This is done because 
BenMAP does not include any regionally based uncertainty - that is, all uncertainty is at 
the national level in BenMAP, and all regional differences (population, for example) are 
treated as certain. 

K.2.2 Mechanics of Pooling in BenMAP  

Once weights are generated for each input distribution, BenMAP has three options for 
using these weights to combine the input distributions into a single new distribution. 
These options are referred to as Advanced Pooling Methods.  
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Round Weights to Two Digits  

This is BenMAP’s default Advanced Pooling Method, and is always the method used when 
Subjective Weights are used. The first step is converting the weights to two digit 
integers by multiplying them by 100 and rounding to the nearest integer. If all the integral 
weights thus generated are divisible by the smallest weight, they are each divided by that 
smallest weight. For example, if the original weights were 0.1, 0.2, 0.3, and 0.4, the resulting 
integral weights would be 10/10, 20/10, 30/10, and 40/10 (or 1, 2, 3, and 4).  

BenMAP then creates a new distribution by sampling each entire input distribution 
according to its weight. That is, in the above example the first distribution would be 
sampled once, the second distribution twice, and so forth. The advantage of sampling 
whole distributions is that it preserves the characteristics (i.e., the moments - the mean, 
the variance, etc.) of the underlying distributions. Assuming n latin hypercube points, 
the resulting distribution will contain a maximum of 100 * n values, which are then 
sorted low to high and binned down to n values, which will represent the new, pooled 
distribution.  

Round Weights to Three Digits  

This Advanced Pooling Method is essentially the same as rounding weights to two 
digits, except that the weights are converted to three digit integers, and so forth. That is, 
the weights are multiplied by 1000 and rounded to the nearest integer. Again, if all the 
integral weights thus generated are divisible by the smallest weight, they are each 
divided by that smallest weight. Assuming n Latin Hypercube points, the resulting 
distribution with this Advanced Pooling Method can contain a maximum of 1000 * n 
values, which are sorted low to high and binned down to n values, which represent the 
new, pooled distribution.  

Exact Weights for Monte Carlo  

This Advanced Pooling Method uses a Monte Carlo method to combine the input 
distributions. Using this method, on each of many iterations, (1) an input distribution is 
selected (with the probability of selection equal to the weight assigned to the 
distribution), and (2) a value is randomly drawn from that distribution. Values chosen 
in this way are placed into a temporary pooled distribution, which will have one point 
per iteration of the Monte Carlo method. The number of iterations is specified by the 
user, and defaults to 5,000. After the temporary distribution is fully generated, it is 
sorted low to high and binned down to n values (where n is the number of Latin 
Hypercube Points chosen for the analysis).  

K.2.3  Summing Distributions  

Sometimes rather than pooling distributions we want to add them. For example, some 
studies have estimated a health impact function for hospital admissions for COPD and 
another health impact function for hospital admissions for pneumonia. From each of 
these health impact functions, BenMAP can derive the corresponding distributions for 
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incidence change. Hospital admissions for COPD and pneumonia are two of the most 
important components of respiratory hospital admissions, and we may want to 
estimate the number of cases of “respiratory hospital admissions,” as characterized by 
being either COPD or pneumonia. To do this we would add the two distributions.  

Summing across distributions can be done in one of two ways: We can assume the two 
distributions are independent of each other or dependent. Which is the more 
reasonable assumption depends on the particulars of the distributions being summed.  

Assuming Independence  

This is the Sum (Independent) Pooling Method. To sum two distributions that are 
independent, on each of many iterations of a Monte Carlo procedure, BenMAP (1) 
randomly selects a value from the first input distribution, (2) randomly selects a value 
from the second input distribution, and (3) adds the two values together. To sum N 
distributions that are independent, BenMAP follows an analogous procedure in which, 
on each iteration it makes a random selection from each of the input distributions and 
then adds the results together. When the Monte Carlo procedure is completed, all such 
generated results are sorted low to high and binned down to the appropriate number of 
latin hypercube points. The number of iterations is determined by the Monte Carlo 
Iterations setting.  

Assuming Dependence  

This is the Sum (Dependent) Pooling Method. Recall that the uncertainty distributions 
in BenMAP are latin hypercube representations, consisting of N percentile points. To 
sum two distributions assumed to be dependent, BenMAP simply generates a new N 
point latin hypercube where each point is the sum of the corresponding points from the 
input latin hypercubes. That is, the first point in the new latin hypercube is the sum of 
the first points in the two input latin hypercubes, and so forth. To sum n distributions 
that are assumed to be dependent, BenMAP follows an analogous procedure in which 
each point in the new latin hypercube is the sum of the corresponding points from each 
of the input latin hypercubes.  

K.2.4  Subtracting Distributions  

In some cases, you may want to subtract one or more distribution(s) from another. For 
example, one study may have estimated a health impact function for minor restricted 
activity days (MRADs), and another study may have estimated a health impact function 
for asthma “episodes.” You may want to subtract the change in incidence of asthma 
episodes from the change in incidence from MRADs before estimating the monetary 
value of the MRADs, so that the monetary value of asthma episodes avoided will not be 
included.  

Subtracting across distributions can be done in one of two ways: we can assume the 
two distributions are independent of each other or dependent. Which is the more 
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reasonable assumption depends on the particulars of the distributions being 
subtracted.  

Assuming Independence  

This is the Subtraction (Independent) Pooling Method. To subtract one distribution 
from another, assuming independence, on each of many iterations of a Monte Carlo 
procedure, BenMAP (1) randomly selects a value from the first input distribution, (2) 
randomly selects a value from the second input distribution, and (3) subtracts the 
second value from the first. To subtract N distributions from another distribution, 
assuming independence, BenMAP follows an analogous procedure in which, on each 
iteration it makes a random selection from each of the input distributions and then 
subtracts the second through the Nth from the first. When the Monte Carlo procedure is 
completed, all such generated results are sorted low to high and binned down to the 
appropriate number of Latin Hypercube points. The number of iterations is determined 
by the Monte Carlo Iterations setting.  

Assuming Dependence  

This is the Subtraction (Dependent) Pooling Method (see Chapter 6 for details). Recall 
that the uncertainty distributions in BenMAP are Latin Hypercube representations, 
consisting of N percentile points. To subtract one distribution from another, assuming 
them to be dependent, BenMAP simply generates a new N point Latin Hypercube where 
each point is the result of subtracting the corresponding point of the second input Latin 
Hypercube from the corresponding point of the first input Latin Hypercube. That is, the 
first point in the new Latin Hypercube is the result of subtracting the first point in the 
second Latin Hypercube from the first point of the first Latin Hypercube, and so forth. 
To subtract n distributions from another distribution, assuming dependence, BenMAP 
follows an analogous procedure in which each point in the new Latin Hypercube is the 
result of subtracting the corresponding points of the second through the Nth input Latin 
Hypercubes from the corresponding point of the first. 
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Appendix L. Command Line BenMAP  

The command line version of BenMAP is capable of performing all of the functions of 
the GUI-based version. It is most useful for large, complex analyses that require 
generation of a substantial number of files. This appendix describes the syntax and use 
of the command line version.  

L.1  Overview  
The overall format of the file is a variable definitions section followed by a commands 
section. Comment statements are supported at any point in the file. Lines beginning 
with a pound character (#) are considered comment lines and will be ignored during 
file parsing.  

Additionally, LOAD <filename> statements are supported at any point in the file. These 
work as string replacements - the contents of the file specified by <filename> are simply 
inserted into the main file. Multi-level LOAD statements are supported, but no attempt 
is made to detect cycles (two files referencing each other with LOAD statements, for 
example).  

The control file is, in general, not case sensitive. In the case of user-defined strings, 
(variable values, etc.), it is preserved.  

L.2 Variables  
The variable definitions section is optional, and if present will consist of a single line 
with the word “Variables” on it, followed by one or more lines that define variables. A 
variable definition consists of a variable name and a variable value. When parsing lines 
in the commands section of the control file, all occurrences of the variable name will be 
replaced by the variable value.  

All variable names must begin and end with the percent character (%).  

Variable Name/Value replacement will be done in multiple passes (until no variable 
names remain), so variable values may contain other variable names. No attempt will 
be made to detect cycles, however, so be careful not to introduce them. For example, 
avoid variable definitions like the following:  

%BENMAPDIR%   %AQGDIR%\  

%AQGDIR%    %BENMAPDIR%\Air Quality Grids  

Variable values must be contained in a single line, and will consist of the first non-
whitespace character after the variable name through the newline character. Watch out 
for undesired trailing whitespaces! 
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L.3 Commands  
The commands section is required, and will consist of one or more command sections. 
There are five types of command sections:  

SETACTIVESETUP  

CREATE AQG  

RUN CFG 

RUN APV  

GENERATE REPORT  

This section will discuss each one in turn.  

In general, in command sections, there must be at least one white space between each 
token (where a token is either a command, a parameter name, or a parameter value).  

L.3.1 Set Active Setup  

For the US version of the BenMAP command line executable the only valid value is 
United States. The SETACTIVESETUP section is required.  

Example  

-ActiveSetup United States 

L.3.2 Create AQG 

This section initiates the creation of one or more air quality grids (normally one, 
potentially two in the case of monitor rollback grid creation - see below). It always 
starts with the words CREATE AQG. It must then include the following options, in any 
order: 

-Filename <filename>  

-Gridtype <gridtype>  

-Pollutant <pollutant>  

The Filename value is the name of the air quality grid that will be created.  

The GridType value must be one found in the BenMAP database. The actual values for 
this parameter are found on the Modify Setup screen in the Grid Definitions list box.  

BenMAP supports pollutant values present in the active setup. By default, these include 
Ozone and PM2.5 (no subscripts needed) for the United States setup. BenMAP 
Command Line will support additional pollutants as well, so long as they are present in 
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the active setup selected at the start of the Command Line Script. These values can be 
found in the Modify Setup screen in the Pollutants list box.  

After these required options, the type of grid creation must be identified, and then the 
parameters for that grid creation type must be specified. There are four air quality grid 
creation types:  

-ModelDirect  

-MonitorDirect  

-MonitorModelRelative  

-MonitorRollback 

L.3.2.1  Model Direct  

This section initiates the creation of a model direct air quality grid.  

This creation type has two required parameters:  

-ModelFilename  <filename>  

-DSNName   <ODBC DSN name>  

and one optional parameter:  

-TableName   <tablename>  

Supported DSNName values are:  

Excel Files    Excel Spreadsheet (.xls)  

Text Files    Comma-delimited (.csv) files  

MS Access Database  Access Database (.mdb)  

If the DSNName is “Excel Files” and there is more than one worksheet in the workbook 
or “MS Access Database” and there is more than one table in the database then the 
TableName parameter must indicate the worksheet or table name. 

L.3.2.2  Monitor Direct  

This section initiates the creation of a monitor direct air quality grid.  

The required parameters are:  

-MonitorDataType   <DataSource descriptor>  

-InterpolationMethod  <Interpolation Method>  
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Valid values for MonitorDataType are:  

-Library  

-DatabaseRows  

-DatabaseColumns  

-TextFile  

Valid values for Interpolation method are:  

-ClosestMonitor  

-V N A  

If MonitorDataType is Library then the following parameters are required:  

-MonitorDataSet <Monitor Dataset Name>  

MonitorDataSet is the Dataset name of Monitor data stored in the BenMAP 
database. These values can be found on the Modify Setup screen in Monitor 
Datasets list box.  

-MonitorYear <Year>  

MonitorYear specifies the year of interest in the monitor library.  

If MonitorDataType is DatabaseRows then the following parameters are 
required:  

-MonitorFile   <filename>  

-DSNName   <ODBC DSN name>  

and one optional parameter:  

-TableName   <tablename>  

Supported DSNName values are:  

-Excel Files    Excel Spreadsheet (.xls)  

-Text Files    Comma-delimited (.csv) files  

-MS Access Database  Access Database (.mdb) 
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If the DSNName is “Excel Files” and there is more than one worksheet in the workbook 
or “MS Access Database” and there is more than one table in the database then the 
TableName parameter must indicate the worksheet or table name.  

If MonitorDataType is DatabaseColumns then the same parameters for 
MonitorDataType DatabaseRows are required along with the following:  

-MonitorDefFilename  

-DefDSNName  

-DefTableName  

These parameters behave the same as the corresponding DatabaseRows parameters.  

If MonitorDataType is TextFile the following parameter is required:  

-MonitorFile <filename>  

MonitorFile specifies a comma separated values (*.csv, generally) file 
containing monitor data.  

Optional Parameters:  

-MaxDistance <real>  

Specifies the maximum distance (in kilometers) to be used in 
ClosestMonitor interpolation or VNA interpolation. Monitors outside this 
distance will not be considered in the interpolation procedure.  

-MaxRelativeDistance <real>  

Specifies the maximum relative distance to be used in VNA interpolation, 
where relative distance is the multiple of the distance to the closest monitor 
used in the interpolation procedure.  

-WeightingMethod <method>  

Specifies the weighting procedure used for monitors in VNA interpolation. 
Supported values are InverseDistance and InverseDistanceSquared. If this 
parameter is not specified, InverseDistance weighting is used.  

L.3.2.3  Monitor Rollback  

[NOTE: Monitor Rollback is currently disabled in BenMAP Command Line. We are 
aware of this issue and working to include the functionality in upcoming BenMAP 
releases.] 

// MonitorRollback  
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BaselineFilename  = -BaselineFilename;  

 

// RollbackOptions  

Percentage  = -Percentage;  

Increment  = -Increment;  

 

// RollbackToStandardOptions  

Standard  = -Standard;  

Metric  = -Metric; 

Ordinality  = -Ordinality;  

InterdayRollbackMethod = -InterdayRollbackMethod;  

IntradayRollbackMethod = -IntradayRollbackMethod; 

L.3.3  Run CFG  

The command line version of BenMAP does not support creation of new .cfgx files, both 
because this would be quite cumbersome to do in plain text, and because it probably is 
not needed. Slight modifications of existing .cfgx files are supported, and it is thought 
that at this point this should be enough.  

As such, the only required parameter to run a configuration is the configuration 
filename. Optional parameters allow the slight modifications mentioned above.  

Required Parameters  

-CFGFilename <filename>  

Specifies the .cfgx file to run.  

-ResultsFilename <filename>  

Specifies the .cfgrx file to save the results in.  

Optional Parameters  

-BaselineAQG <filename>  
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Specifies the baseline air quality grid file to use when running the 
configuration - overrides whatever value is present in the .cfgx file.  

-ControlAQG <filename>  

Specifies the control air quality grid file to use when running the 
configuration - overrides whatever value is present in the .cfgx file.  

-Year <Integer>  

Year in which to run the configuration (this will affect the population 
numbers used) - overrides whatever value is present in the .cfgx file. 
Supported values are 1990 and up.  

-LatinHypercubePoints <integer>  

Number of latin hypercube points to generate when running the 
configuration (zero means run in point mode), overrides whatever value is 
present in the .cfgx file.  

-Threshold <real>  

Threshold to use when running the configuration - overrides whatever value is 
present in the .cfgx file. 

L.3.4  Run APV  

The command line version of BenMAP does not support creation of new .apvx files, both 
because this would be quite cumbersome to do in plain text, and because it probably is 
not needed. Slight modifications of existing .apvx files are supported, and it is thought 
that at this point this should be enough.  

As such, the only required parameter to run an APV configuration is the APV 
configuration filename. Optional parameters allow the slight modifications mentioned 
above. 

Required Parameters  

-APVFilename <filename>  

Specifies the .apvx file to run.  

-ResultsFilename <filename>  

Specifies the .apvrx file to save the results in.  

Optional Parameters  

-CFGRFilename <filename>  
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Specifies the .cfgrx file to use when running the APV configuration - note that 
this file must contain the same set of results which the .cfgrx file originally used 
to generate the .apvx file contained. Overrides whatever value is present in the 
.apvx file.  

-IncidenceAggregation <aggregation level>  

Level to aggregate incidence results to before pooling them. Supported values 
are None, County, State, and Nation. Overrides whatever value is present in the 
.apvx file.  

-ValuationAggregation <aggregation level>  

Level to aggregate valuation results to before pooling them. Supported values 
are None, County, State, and Nation (though the value must be greater than or 
equal to IncidenceAggregation). Overrides whatever value is present in the .apvx 
file.  

-RandomSeed <integer>  

Random seed to use for all procedures requiring pseudo-random numbers (e.g. 
monte carlo procedures). Overrides the default behavior, which is to generate a 
new random seed each time the APV configuration is run.  

-DollarYear <integer> 

L.3.5 Generate Report  

Reports come in three main varieties - Audit Trail Reports, which can be generated 
from any BenMAP file; Configuration Results Reports, which can be generated from 
.cfgrx files; and APV Configuration Results Reports, which can be generated from .apvrx 
files. All these report types need an input filename and an output filename. CFGR 
reports and APVR reports additionally take many optional parameters.  

The format for each report type is:  

GENERATE REPORT <ReportType> 

-InputFile <filename>  

-ReportFile <filename>  

<optional parameters> 

Supported ReportType values are: AuditTrail, CFGR, and APVR. 
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L.3.5.1  Audit Trail  

Audit trail reports require only the parameters described in the “Generate Report” 
section.  

L.3.5.2  CFGR Report  

A CFGR report may be generating using only the parameters described in the “Generate 
Report” section. However, there are also a number of additional options, described 
below.  

Optional Parameters  

-GridFields <comma separated field names>  

Specifies the set of grid fields to include in the report. Grid fields include Column 
and Row. If this parameter is not present, all fields will be included in the report.  

-CustomFields <comma separated field names>  

Specifies the set of custom fields (C-R Function identifiers, in this case) to 
include in the report. Custom fields include DataSet, Endpoint Group, Endpoint, 
Pollutant, Metric, Seasonal Metric, Metric Statistic, Author, Year, Location, Other 
Pollutants, Qualifier, Reference, Race, Ethnicity, Gender, Start Age, End Age, 
Function, Incidence Dataset, Prevalence Dataset, Beta, Disbeta, P1Beta, P2Beta, 
A, NameA, B, NameB, C, NameC, and Geographic Area. If this parameter is not 
present, all fields will be included in the report.  

-ResultFields <comma separated field names>  

Specifies the set of result fields to include in the report. Result fields include 
Point Estimate, Population, Delta, Mean, Baseline, Percent of Baseline, Standard 
Deviation, Variance, and All Percentiles. If this parameter is not present, all fields 
will be included in the report. If All Percentiles is not chosen, BenMAP will only 
export the 2.5th and 97.5th percentiles.  

L.3.5.3  APVR Report  

Required Parameters  

APVR Reports require one additional parameter beyond those required for Audit Trail 
or CFGR Reports. 

-ResultType <result type>  

Specifies the result type for which a report should be created. Supported result 
types are: IncidenceResults, PooledIncidence, PooledValuation.  

Optional Parameters  
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All of the CFGR report parameters are supported for APVR reports as well, except that 
Population and Delta are not supported ResultField elements.  

-Totals <total type>  

Specifies the type of totals which should be included in the report. Supported 
types are Dependent and Independent. Totals can only be generated for 
valuation results (Valuation, AggregatedValuation, and PooledValuation result 
types). 

-ResultFields <comma separated field names>  

Specifies the set of result fields to include in the report. For IncidenceResults 
reports, all fields will be included by default. For PooledIncidence reports, 
supported fields are: Point Estimate, Population, Delta, Mean, Baseline, Percent 
of Baseline, Standard Deviation, Variance, and All Percentiles. For 
PooledValuation reports, supported fields are: Point Estimate, Mean, Standard 
Deviation, Variance, Percentiles. If All Percentiles is not chosen, BenMAP will 
only export the 2.5th and 97.5th percentiles. 

L.4 Example 1 
VARIABLES  

%CFG% C:\BenMAP\CommandLine\Configurations\PM25 Wizard.cfgx 
%APV% C:\BenMAP\CommandLine\Configuations\PM25 Wizard.apvx 
%RESULTSDIR% C:\BenMAP\Temp 
%REPORTDIR% C:\BenMAP\Temp 
%AQG% C:\BenMAP\CommandLine\Air Quality Grids 
 
COMMANDS 
 
SETACTIVESETUP 
 
-ActiveSetup United States 
 
CREATE AQG 
 

-Filename %AQG%\PM25_2002Baseline_50km.aqgx 
-GridType CMAQ 12km 
-Pollutant PM2.5 
 
MonitorDirect 
 
-InterpolationMethod VNA 
-MonitorDataType Library 
-MonitorDataSet EPA Standard Monitors 
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-MonitorYear 2002 
-MaxDistance 50 
 

CREATE AQG 
 

-Filename %AQG%\PM25_2002Control_50km.aqgx 
-GridType CMAQ 12km 
-Pollutant PM2.5 
 
MonitorRollback 
 
-InterpolationMethod VNA 
-MonitorDataType Library 
-MonitorDataSet EPA Standard Monitors 
-MonitorYear 2002 
-RollbackGridType State 
-MaxDistance 50 
 
RollbackToStandardOptions 
 
-Stanard 65 
-Metric D24HourMean 
-InterdayRollbackMethodIncremental 
 

RUN CFG 
 
-CFGFilename %CFG% 
-ResultsFilename %RESULTSDIR%\PM25_2002_50km.aqgx 
-BaselineAQG %AQG%\PM25_2002Baseline_50km.aqgx 
-ControlAQG %AQG%\PM25_2002Control_50km.aqgx 
 

RUN APV 
 
-APVFilename %APV% 
-ResultsFilename %RESULTSDIR%\PM25_2002_50km.apvrx 
-CFGRFilename %RESULTSDIR%\PM25_2002_50km.cfgrx 
-IncidenceAggregation Nation 
-ValuationAggregation Nation 
 

GENERATE REPORT APVR 
 
-InputFile %RESULTSDIR%\PM25_2002_50km.apvrx 
-ReportFile %REPORTDIR%\PM25_2002_50km_IncidenceNation.csv 
-ResultType PooledIncidence 
-CustomFields Endpoint Group,Author,Start Age,Endpoint,Qualifier, 

Pooling Window 



 Appendix L: Command Line BenMAP 

BenMAP-CE User’s Manual Appendices March 2023 
L-12 

-ResultFields Mean,Standard Deviation,Latin Hypercube Points 
-DecimalDigits 0 
 

GENERATE REPORT APVR 
 
-InputFile %RESULTSDIR%\PM25_2002_50km.apvrx 
-ReportFile %REPORTDIR%\PM25_2002_50km_ValuationNation.csv 
-ResultType PooledValuation 
-CustomFields Endpoint Group, Author,Start Age, Endpoint, Qualifier,  
 Pooling Window 
-ResultFields Mean,Standard Deviation,Latin Hypercube Points 
-DecimalDigits 0 
 

L.5 Example 2 
 

VARIABLES 
 
%CFG% C:\BenMAP\CommandLine\Configurations\PM25 

Wizard.cfgx 
%APV% C:\BenMAP\CommandLine\Configurations\PM25 

Wizard.apvx 
%RESULTSDIR% C:\BenMAP\Temp 
%REPORTDIR% C:\BenMAP\Temp 
%AQG% C:\BenMAP\CommandLine\Air Quality Grids 
 

COMMANDS 
 

SETACTIVESETUP 
 
-ActiveSetup United States  
 

CREATE AQG 
 
-Filename %AQG%\PM25_2004Baseline.aqgx 
-GridType County 
-Pollutant PM2.5 
 
MonitorDirect 
 
-InterpolationMethod VNA 
-MonitorData Type Library 
-MonitorDataSet EPA Standard Monitors 
-MonitorYear 2004 
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CREATE AQG 
 
-Filename %AQG%\PM25_2004_Control.aqgx 
-GridType County 
-Pollutant PM2.5 
 
MonitorRollback 
 
-InterpolationMethod VNA 
-MonitorDataType Library 
-MonitorDataSet EPA Standard Monitors 
-MonitorYear 2004 
-RollbackGridType State 
-MaxDistance 50 
 
RollbackToStandardOptions 
 
-Standard  35 
-Metric  D24HourMean 
-InterdayRollbackMethod Incremental 
 

RUN CFG 
-CFGFilename %CFG% 
-ResultsFilename %RESULTSDIR%\PM25_2004.cfgrx 
-BaselineAQG %AQG%\PM25_2004Baseline.aqgx 
-ControlAQG %AQG%\PM25_2004Control.aqgx 
 

RUN APV 
-APVFilename %APV% 
-ResultsFilename %RESULTSDIR%\PM25_2004.apvrx 
-CFGRFilename %RESULTSDIR%\PM25_2004.cfgrx 
-IncidenceAggregaton Nation 
-IncidenceAggregation Nation 
 

GENERATE REPORT APVR 
 
-InputFile %RESULTSDIR%\PM25_2004.apvrx 
-ReportFile %REPORTDIR%\pm25_2004_IncidenceNation.csv 
-ResultType PooledIncidence 
-CustomFields Endpoint Group, Author,Start Age, Endpoint,Qualifier,  
 Pooling Window 
-ResultFields Mean,Standard Deviation, Latin Hypercube Points 
-DecimalDigits 0 
 

GENERATE REPORT APVR 
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-InputFile %RESULTSDIR%\PM25_2004.apvrx 
-ReportFile %REPORTDIR%\PM25_2004_ValuationNation.csv 
-ResultType PooledValuation 
-CustomFields Endpoint Group, Author, Start Age, Endpoint, Qualifier, 

Pooling Window 
-ResultFields Mean,Standard Deviation, Latin Hypercube Points 
-DecimalDigits 0 
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Appendix M. Function Editor  

The function editor is used to develop both health impact functions and valuation 
functions. This appendix describes the syntax of this editor. 

M.1 User Defined Variables 
In addition to pre-defined variables that you can select from the Available Variables list, 
you can create your own variables in the C-R Function Editor.  

A variable is an identifier whose value can change at runtime. Put differently, a variable 
is a name for a location in memory; you can use the name to read or write to the 
memory location. Variables are like containers for data, and, because they are typed, 
they tell the compiler how to interpret the data they hold.  

The basic syntax for a variable declaration is  

var identifierList: type;  

where identifierList is a comma-delimited list of valid identifiers and type is any valid 
type. For example,  

var I: Integer;  

declares a variable I of type Integer, while  

var X, Y: Real;  

declares two variables--X and Y--of type Real.  

Consecutive variable declarations do not have to repeat the reserved word var:  

var  

X, Y, Z: Double;  

I, J, K: Integer;  

Digit: 0..9;  

IndicatorName: String;  

Okay: Boolean;  

Variables can be initialized at the same time they are declared, using the syntax  

var identifier: type = constantExpression;  
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where constantExpression is any constant expression representing a value of type type. 
Thus the declaration  

var I: Integer = 7; 

is equivalent to the declaration and statement  

var I: Integer;  

...  

I := 7;  

Multiple variable declarations (such as var X, Y, Z: Real;) cannot include initializations, 
nor can declarations of variant and file-type variables. 

M.2 The Script Language 
In the C-R Function Editor, you can evaluate complex block of statements.  

You can use constructions like:  

If...then...else;  

for I:= ... to .. do ;  

while... do ;  

repeat .... until...;  

break;  

assignment (...:=....;)  

try...finally...end; try...except...end;  

Each function you create can be a single statement or a block of statements.  

When you specify it as a block of statements, your script must conform to the rules of 
the script language, as follows:  

1. Each single statement must end with a semicolon (;)  

2. You can use the following statements:  

variable := expression;  

If logical expression then statement(s) [else statement(s)];  



 Appendix M: Function Editor 

BenMAP-CE User’s Manual Appendices March 2023 
M-3 

for variable := from_expression to/downto to_expression do statement(s);  

while logical_expression do statement(s);  

repeat statement(s) until logical_expression;  

try statement(s) finally statement(s) end; try  

statement(s) except statement(s) end;  

inline comments: // comment... until the end of the line 

nested comments: { nested comment } 

Statement(s) in the above declarations states that you can specify either a single 
statement or a block of statements. The block of statements must be enclosed in begin 
... end keywords. It is not necessary to enclose the body of the function in begin .. end. 
Cycle statements can use break keyword to break the cycle (break must also end with 
semicolon.) 

M.3 Operands 
Expressions may contain the following constant and variable types: 

Integer numbers; 

Floating point numbers; 

Scientific numbers; 

Decimal separator for all floating point and scientific-format numbers in expressions, is 
independent of the Regional Settings of Windows and always is a decimal point (‘.’).  

Boolean values - TRUE or FALSE;  

Date type values - values of that type must be put in quotes ( ‘ ‘ ), and also date separator 
character is independent of the Regional Settings of Windows and always is a slash - /, i.e. - 
‘01/01/2005’  

String values - values of that type must be put in double quotes (“ “); If a string contains double 
quotes, you should double them (i.e., “this is a ““string”“ “);  

M.4 Operations 
Arithmetical 

+, –, ×, /;  

div - integer division;  
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mod - modulo;  

^ - power of;  

- - negate;  

Logical  

<, <=, >=, >, <>, =;  

and, or, xor, not;  

Bitwise  

and, or, xor;  

~ - negate;  

M.5 Arithmetic Functions 
ABS(X) Absolute value 
SQR(X) Square = X×2=X×X 
SQRT(X) Square root 
SIGN(X) Sign of X;=1 for X>0, =0 for X=0, =-1 for X<0 
ZERO(X) =0 for X=0, =1 for X<>0 
TRUNC(X)=INT(X) Integer part 
FRAC(X)  fractional part  
ROUND(X)  rounds X to the nearest integer value  
CEIL(X)  always returns “ceil” integer value 
FLOOR(X)  always returns “floor” integer value 
DEC(X)  decrements a value X by 1 and returns a new value  
INC(X)  increments a value X by 1 and returns a new value  
ARG(X,Y)  argument(phase) of X and Y  
RADIUS(X,Y) = sqrt(sqr(X)+sqr(Y))  
POWER(X,Y) raises X to a power of Y (Y is a floating point value)  
IPOWER(X,Y)  raises X to a power of Y (Y is a integer value)  
X^ Y  raises X to a power of Y (same as above two functions)  
EXP(X)  exponent 
LN(X)  natural logarithm  
LG(X)  decimal logarithm  
LOG(X) base 2 logarithm  
SIN(X) sine 
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COS(X) cosine 
TAN(X)  Tangent 
COTAN(X)  cotangent 
ASIN(X)  Arcsine 
ACOS(X) arccosine 
ATAN(X) arctangent 
SINH(X) hyperbolic sine  
COSH(X) hyperbolic cosine 
TANH(X) hyperbolic tangent 
  

M.6 Aggregate Functions 
AVG(X1,X2,...)  returns average value of (unlimited number of) arguments.  

MAX(X1,X2,...)  maximum of (unlimited number of) arguments. 

MIN(X1,X2,...)  minimum of (unlimited number of) arguments. 

SUM(X1,X2,...)  sum of (unlimited number of) arguments.  

PROD(X1,X2,..)  product of (unlimited number of) arguments.  
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